Supplementary Information

The effect of regioisomerism on the solid-state fluorescence of bis(piperidyl)anthracenes: structurally simple but bright AIE luminogens[†]

Shunsuke Sasaki,^a Kazunobu Igawa,^b and Gen-ichi Konishi*^{a,c}

^a Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Tokyo 152-8552, Japan
^b Institute for Materials Chemistry and Engineering and Department of Molecular and Material Sciences, Kyushu University, Fukuoka 816-8580, Japan
^c PRESTO, Japan Science and Technology Agency (JST)

* Corresponding author; e-mail: konishi.g.aa@m.titech.ac.jp; fax: +81-3-5734-2321

S1. NMR charts

Fig. S2. ¹³C NMR spectrum of 1-PA (100 MHz, CDCl₃).

Figure S4. ¹³C NMR spectrum of 1,4-BPA (75 MHz, CDCl₃).

Fig. S5. ¹H NMR spectrum of **1,5-BPA** (300 MHz, CDCl₃).

Fig. S6. ¹³C NMR spectrum of **1,5-BPA** (100 MHz, CDCl₃).

Fig. S8. ¹³C NMR spectrum of **1,8-BPA** (100 MHz, CDCl₃).

2,6-BPA

Fig. S12. ¹³C NMR spectrum of **2,6-BPA** (100 MHz, CDCl₃).

S2. Thermogravimetric analysis (TGA)

Fig. S17. TGA thermograms of AIE-active 1,4-BPA and 9,10-BPA.

Fig. S18. Autocorrelation functions for the PA and BPA regioisomers plotted against the logarithm of the time decay ("Blank" data was obtained from the mixed THF: H_2O = 1:9 (v/v) solvent in the absence of analyte).

autocorrelation function.

its autocorrelation function.

its autocorrelation function.

S4. Photophysical measurements

(1) Photophysical parameters

Table S1. Absorption maxima (λ_{abs}), fluorescence maxima (λ_{fl}), absolute fluorescence quantum yields (Φ_f), fluorescence lifetimes (τ_{fl}), radiative rate constants (k_r) and non-radiative rate constants (k_{nr}) for the regioisomers of **PA** and **BPA**.

Fntm	Solvent	Solvent ε λ_{abs} λ_{fl}^{a} Φ^{b}	Ψp	$ au_{ m fl}{}^{ m d}$	$k_{ m f}$	<i>k</i> _{nr}		
	Solvent	$[M^{-1} \text{ cm}^{-1}]$	[nm]	[nm]	Ψ_{f}	[ns]	$[10^{6} \mathrm{s}^{-1}]$	$[10^{6} \mathrm{s}^{-1}]$
	Toluene	5200	387	504	0.862	15.2	57	9.1
1.04	THF	5100	385	521	0.905	17.1	53	5.6
1-PA	DMF	5000	387	550	0.847	23.8	36	6.4
	THF-H ₂ O ^c	-	402	519	0.487	2.6 (0.10)	37 ^e	40 ^e
						14.1 (0.90)		
	Toluene	5600	403	587	0.447	13.1	34	42
1,4-BPA		5700	401	598	0.251	9.9	25	/6
,	DMF	5400	404	631	0.080	-	-	-
	$\underline{\text{THF-H}_2\text{O}^c}$		414	<u> </u>	0.446	<u>18.4</u>	<u>24</u> e	<u></u>
	Toluene	7300	390	490	0.589	8.4	70	49
	THF	7400	389	504	0.767	11.5	67	20
1,5-BPA	DMF	7100	392	533	0.867	18.6	47	7.2
	THF-H ₂ O ^c	-	415	504	0.120	1.0(0.50)	49 ^e	360 ^e
	Taluana	6400	207	408	0.502		56	20
	TUE	6400	207 285	490 514	0.392	10.0	30 49	29 20
1 Q DDA		6300	200	540	0.705	21.1	40	20
1, 0-D I A	DMI	0300	500	540	0.795	21.1 20(0.22)	38	9.7
	THF-H ₂ O ^c	-	397	514	0.152	2.0 (0.33) 6.4 (0.67)	31e	170 ^e
	Toluene	3600 ^f	400, 339	489 ^g	0.936	16.6	56	3.9
	THF	3600^{f}	399, 338	504 ^g	0.909	17.1	53	5.3
2-PA	DMF	3500 ^f	402, 339	525 ^g	0.923	22.9	40	3.4
			120 265	1009	0.220	3.6 (0.22)	15 e	0 7 e
	ТНГ - Н ₂ О°		428, 303	4885 0.339	0.339	8.8 (0.78)	43*	8/~
	Toluene	5100 ^f	423, 335	513 ^g	0.925	15.5	60	4.9
	THF	5200 ^f	423, 335	515 ^g	0.883	16.2	54	7.2
2,6-BPA	DMF	5100 ^f	428, 336	528 ^g	0.921	20.1	46	3.9
	THE-H-OC		440 341	504g	0 147	1.4 (0.50)	43 e	250e
					0.147	5.5 (0.50)	ر ب 	
	Toluene	6000	388	472	0.011	-	-	-
9_P A	THF	6100	387	478	0.008	-	-	-
)-1 A	DMF	5700	388	495	0.013	-	-	-
	THF-H ₂ O ^c		394	490	0.047			
	Toluene	5800	400	525	0.024	-	-	-
9 10_	THF	6100	399	528	0.021	-	-	-
7,10- RPA	DMF	5600	400	537	0.019	-	-	-
DI A	THF-H ₂ O ^c	-	407	514	0.789	4.3 (0.05)	67 ^e	18 ^e
						12.1 (0.93)		

^a Excitation wavelengths correspond to the absorption maxima of the band with the longest wavelength.

^b The excitation wavelength was fixed at 343 nm, which is the wavelength of the light source of the lifetime spectrometer. All of these quantum yields are almost identical to those collected when excitation wavelengths correspond to the absorption maxima at the band with the longest wavelength.

- ^c THF:H₂O = 1:9 (v/v); the formation of aggregation was confirmed by broadening of the corresponding UV-Vis spectra (Fig. S27-S34).
- ^d The values in brackets indicate relative contributions of each lifetime component.
- ^e Average lifetime amplitudes were used for the calculations.¹
- ^fExtinction coefficients at the band with the longest wavelength.

^g Fluorescence spectra did not show any significant change as a function of the excitation wavelength (Fig. S39-S42).

Table S2. Maxima of diffuse-reflectance spectra (λ_{df}), fluorescence maxima (λ_{fl}), absolute fluorescence quantum yields (Φ_f), and Stokes shifts ($\Delta \tilde{v}_{St}$) of the **PA** and **BPA** regioisomers.

Entry	State	λ_{df} [nm]	$\lambda_{\mathrm{fl}}{}^{\mathrm{a}}\left[\mathrm{nm} ight]$	$\Phi_{\mathrm{f}}{}^{\mathrm{b}}$	$\Delta \tilde{v}_{\mathrm{St}} [\mathrm{cm}^{-1}]$
1 D A	1mM in NaBr ^c	394	495	-	5300
1-PA	Neat powder	-	500	0.522	
1 / DDA	1mM in NaBr ^c	414	594	-	7400
1,4-бра	Neat powder	-	591	0.492	-
1 5 DDA	1mM in NaBr ^c	397	495	-	5200
1, 5-BP A	Neat powder		518	0.344	
1 Q DDA	1mM in NaBr ^c	395	500	-	5800
1, 0- DFA	Neat powder	-	531	0.123	
2 DA	1mM in NaBr ^c	431	497	-	3200
2- FA	Neat powder	-	523	0.267	
1 C DDA	1mM in NaBr ^c	436	508	-	3600
2,0-DFA	Neat powder	-	532	0.174	
	1mM in NaBr ^c	394	519	-	6400
9-1 A	Neat powder	-	519	0.709	
0 10 DDA	1mM in NaBr ^c	404	519	-	5500
7,10-DFA	Neat powder	-	519	0.856	-

^a The excitation wavelength corresponds to the maxima of diffused-reflectance spectra observed from the dispersed state in NaBr.

^b Excitation wavelength: 350 nm. For those with different excitation wavelengths, see Fig. S35-S42.

 $^{\rm c}$ Samples adsorbed on NaBr powder at a concentration of 1.0 \cdot 10 $^{-3}$ M.

(2) Absorption spectra

Fig. S28. UV-Vis absorption spectra of 1,4-BPA.

Fig. S29. UV-Vis absorption spectra of 1,5-BPA.

Fig. S30. UV-Vis absorption spectra of 1,8-BPA.

Fig. S31. UV-Vis absorption spectra of 2-PA.

Fig. S32. UV-Vis absorption spectra of 2,6-BPA.

Fig. S33. UV-Vis absorption spectra of 9-PA.

Fig. S34. UV-Vis absorption spectra of 9,10-BPA.

(3) Fluorescence spectra

Fig. S36. Fluorescence spectra of 1,4-BPA.

Fig. S38. Fluorescence spectra of 1,8-BPA.

Fig. S39. Fluorescence spectra of **2-PA** (excitation wavelength of these spectra correspond to maxima of longer-wavelength bands around 400 nm).

Fig. S40. Fluorescence spectra of **2-PA** (excitation wavelengths of these spectra correspond to maxima of shorter-wavelength bands around 340 nm).

Fig. S41. Fluorescence spectra of **2,6-BPA** (excitation wavelengths of these spectra correspond to maxima of longer-wavelength bands around 420 nm).

Fig. S42. Fluorescence spectra of **2,6-BPA** (excitation wavelengths of these spectra correspond to maxima of longer-wavelength bands around 340 nm).

Fig. S44. Fluorescence spectra of 9,10-BPA.

(4) Diffuse-reflectance spectra of polycrystalline solids

Fig. S45. Diffuse-reflectance spectra and excitation-wavelength dependency of the fluorescence quantum yield, $\Phi_{\rm f}$, (neat powder) obtained from 1-PA.

Fig. S46. Diffuse-reflectance spectra and excitation-wavelength dependency of the fluorescence quantum yield, $\Phi_{\rm f}$, (neat powder) obtained from 1,4-BPA.

Fig. S47. Diffuse-reflectance spectra and excitation-wavelength dependency of the fluorescence quantum yield, Φ f, (neat powder) obtained from 1,5-BPA.

Fig. S48. Diffuse-reflectance spectra and excitation-wavelength dependency of the fluorescence quantum yield, Φf , (neat powder) obtained from 1,8-BPA.

Fig. S49. Diffuse-reflectance spectra and excitation-wavelength dependency of the fluorescence quantum yield, Φ f, (neat powder) obtained from 2-PA.

Fig. S50. Diffuse-reflectance spectra and excitation-wavelength dependency of the fluorescence quantum yield, Φ f, (neat powder) obtained from 2,6-BPA.

Fig. S51. Diffuse-reflectance spectra and excitation-wavelength dependency of the fluorescence quantum yield, Φ f, (neat powder) obtained from 9-PA.

Fig. S52. Diffuse-reflectance spectra and excitation-wavelength dependency of the fluorescence quantum yield, Φf , (neat powder) obtained from 9,10-BPA.

(5) Fluorescence spectra in the solid state

Fig. S53. Fluorescence spectra of **1-PA** in the solid state (the excitation wavelength corresponds to the maxima of diffused-reflectance spectra observed from the dispersed state in NaBr).

Fig. S54. Fluorescence spectra of **1,4-BPA** in the solid state (the excitation wavelength corresponds to the maxima of diffused-reflectance spectra observed from the dispersed state in NaBr).

Fig. S55. Fluorescence spectra of **1,5-BPA** in the solid state (the excitation wavelength corresponds to the maxima of diffused-reflectance spectra observed from the dispersed state in NaBr).

Fig. S56. Fluorescence spectra of **1,8-BPA** in the solid state (the excitation wavelength corresponds to the maxima of diffused-reflectance spectra observed from the dispersed state in NaBr).

Fig. S57. Fluorescence spectra of **2-PA** in the solid state (the excitation wavelength corresponds to the maxima of diffused-reflectance spectra observed from the dispersed state in NaBr).

Fig. S58. Fluorescence spectra of **2,6-BPA** in the solid state (the excitation wavelength corresponds to the maxima of diffused-reflectance spectra observed from the dispersed state in NaBr).

Fig. S59. Fluorescence spectra of **9-PA** in the solid state (the excitation wavelength corresponds to the maxima of diffused-reflectance spectra observed from the dispersed state in NaBr).

Fig. S60. Fluorescence spectra of 9,10-BPA in the solid state (the excitation wavelength corresponds to the maxima of diffused-reflectance spectra observed from the dispersed state in NaBr).

S5. Crystallographic information

9-Piperidylanthracene (9-PA)

Fig. S61. ORTEP drawing of **9-PA** (thermal ellipsoids at 50% probability). Selected crystal parameters for **9-PA**: monoclinic, $P2_1/c$ (No. 14), a = 8.8386(6) Å, b = 21.570(2) Å, c = 7.7107(5) Å, $\beta = 98.864(7)$ °, V = 1452.5(2) Å³, Z = 4, $R_1 = 0.0508$, $wR_2 = 0.1374$. CCDC 1055226 contains the supplementary crystallographic data for this compound. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

Fig. S62. Crystal packing of **9-PA** (hydrogen atoms omitted for clarity. Each ball represents the van der Waals radius of an atom. Colour code: blue – nitrogen; black – carbon).

9,10-Bis(piperidyl)anthracene (9,10-BPA)

Fig. S63. ORTEP drawing of **9,10-BPA** (thermal ellipsoids at 50% probability). Selected crystal parameters for of **9,10-BPA**: triclinic, *P*-1 (No. 2), a = 7.388(2) Å, b = 7.625(2) Å, c = 9.047(3) Å, a = 101.595(6) °, $\beta = 103.106(5)$ °, $\gamma = 99.662(4)$ °, V = 473.9(3) Å³, Z = 1, $R_1 = 0.0802$, $wR_2 = 0.2243$. CCDC 1055229 contains the supplementary crystallographic data for this compound. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

1,4-Bis(piperidyl)anthracene (1,4-BPA)

Fig. S64. ORTEP drawing of **1,4-BPA** (thermal ellipsoids at 50% probability). Selected crystal paramters for **1,4-BPA**: monoclinic, $P2_1/n$ (No. 14), a = 18.041(5) Å, b = 10.854(3) Å, c = 29.573(8) Å, $\beta = 90.12(2)$ °, V = 5791.(3) Å³, Z = 12, $R_1 = 0.0531$, $wR_2 = 0.0863$. CCDC 1055227 contains the supplementary crystallographic data for this compound. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

1,5-Bis(piperidyl)anthracene (1,5-BPA)

Fig. S65. ORTEP drawing of **1,5-BPA** (thermal ellipsoids at 50% probability). Selected crystal parameters for **1,5-BPA**: triclinic, *P*-1 (No. 2), a = 9.7682(10) Å, b = 10.058(2) Å, c = 10.3707(11) Å, a = 85.751(9) °, $\beta = 66.290(7)$ °, $\gamma = 83.253(9)$ °, V = 926.1(2) Å³, Z = 2, $R_1 = 0.0839$, $wR_2 = 0.2455$. CCDC 1055228 contains the supplementary crystallographic data for this compund. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

S6. Computational calculations

The ground-state and excited-state equilibrium structures of 1,4bis(piperidyl)anthracene (1,4-BPA) and 1,5-bis(piperidyl)anthracene (1,5-BPA) were fully optimized by self-consistent field calculations using ω B97X-D as the hybrid density functional and 6-311G(d,p)² as basis sets. Hybrid functionals of the ω B97family can address non-local exchange correlation and especially ω B97X-D takes dispersion effects into consideration³. Therefore ω B97X-D is suitable for the calculation of molecules with severe steric repulsions in the excited states. The analytical frequencies were obtained for ground-state structures to ensure that a local energy minimum has been located. Excited-state equilibrium structures were optimized for first-singlet excited states. All calculations were performed using the Gaussian 09 program package.⁴

(1) Optimized geometries

1,4-BPA (Ground): $E(R\omega B97X-D) = -1040.854657$ hartree						
Conton number	A tomio numbor	С	s)			
	Atomic number	Х	Y	Ζ		
1	6	2.542162	-0.16914	0.714237		
2	6	2.542162	-0.16914	-0.71424		
3	6	1.322779	-0.16652	-1.39216		
4	6	0.106012	-0.13391	-0.71632		
5	6	0.106012	-0.13391	0.716324		
6	6	1.322779	-0.16652	1.392164		
7	6	3.793819	-0.19635	1.401182		
8	6	4.96681	-0.2163	0.711919		
9	6	4.96681	-0.2163	-0.71192		
10	6	3.793819	-0.19635	-1.40118		
11	6	-1.15254	-0.17012	-1.42746		
12	6	-2.30636	-0.2869	-0.71153		
13	6	-2.30636	-0.2869	0.711529		
14	6	-1.15254	-0.17012	1.427456		
15	7	-1.11278	-0.11171	2.841933		
16	7	-1.11278	-0.11171	-2.84193		
17	6	-0.83982	1.22796	3.369382		
18	6	-0.44338	1.155586	4.839253		
19	6	-1.52108	0.441983	5.654867		
20	6	-1.85473	-0.91123	5.027505		

 Table S3. Atom coordinates and absolute energy levels for the ground state of 1,4-BPA

 obtained from theoretical calculations.

21	6	-2.20908	-0.75301	3.551602
22	6	-2.20908	-0.75301	-3.5516
23	6	-1.85473	-0.91123	-5.02751
24	6	-1.52108	0.441983	-5.65487
25	6	-0.44338	1.155586	-4.83925
26	6	-0.83982	1.22796	-3.36938
27	1	1.314469	-0.22726	-2.47435
28	1	1.314469	-0.22726	2.474347
29	1	3.789548	-0.1989	2.486349
30	1	5.911462	-0.23404	1.243658
31	1	5.911462	-0.23404	-1.24366
32	1	3.789548	-0.1989	-2.48635
33	1	-3.26017	-0.33902	-1.22259
34	1	-3.26017	-0.33902	1.222592
35	1	-0.04382	1.685082	2.779712
36	1	-1.73509	1.867119	3.256179
37	1	0.503947	0.610741	4.922052
38	1	-0.27455	2.166658	5.221377
39	1	-1.20108	0.317284	6.693048
40	1	-2.42623	1.062572	5.67277
41	1	-0.99109	-1.57974	5.108485
42	1	-2.68938	-1.38472	5.552979
43	1	-2.39109	-1.7286	3.095359
44	1	-3.14506	-0.16759	3.470893
45	1	-2.39109	-1.7286	-3.09536
46	1	-3.14506	-0.16759	-3.47089
47	1	-0.99109	-1.57974	-5.10849
48	1	-2.68938	-1.38472	-5.55298
49	1	-1.20108	0.317284	-6.69305
50	1	-2.42623	1.062572	-5.67277
51	1	0.503947	0.610741	-4.92205
52	1	-0.27455	2.166658	-5.22138
53	1	-0.04382	1.685082	-2.77971
54	1	-1.73509	1.867119	-3.25618

Table S4. Atom coordinates and absolute energy levels for the excited state of 1,4-bis(piperidyl)anthracene (**1,4-BPA**) obtained from theoretical calculations.

1, -DIA(Exclud). E(1D-0D)(X-D) = -10+0.7+0505 harded						
Center number	Atomic number	С	oordinate (Angstrom	s)		
		Х	Y	Z		
1	6	2.495913	0.187399	-0.71411		
2	6	2.495913	0.187399	0.714111		
3	6	1.24712	0.180486	1.395538		
4	6	0.025976	0.106341	0.71626		
5	6	0.025976	0.106341	-0.71626		
6	6	1.24712	0.180486	-1.39554		
7	6	3.725793	0.226032	-1.39057		
8	6	4.928219	0.260571	-0.69674		

1.4- BPA (Exc	ited) E(TD- <i>w</i> B9'	7X-D = -10407	46305 hartree

9 6 4.928219 0.260571 0.696741 10 6 3.725793 0.226032 1.390567 11 6 -1.22887 0.138199 1.409052 12 6 -2.426 0.366188 0.685967 13 6 -2.426 0.366188 0.68597 14 6 -1.22887 0.138199 -1.409055 15 7 -1.27079 -0.03293 -2.77598 16 7 -1.27079 -0.3293 -2.77598 16 7 -1.27079 -0.3293 -2.77598 16 7 -1.27079 -0.3293 -2.77598 16 -0.6621 -1.22306 3.37669 20 6 -1.90326 0.845908 4.969077 21 6 -2.37625 0.500655 3.55667 22 6 -1.90326 0.845908 4.969077 24 6 -1.25738 <					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	6	4.928219	0.260571	0.696741
116 -1.22887 0.138199 1.409052 126 -2.426 0.366188 0.685967 136 -2.426 0.366188 -0.68597 146 -1.22887 0.138199 -1.40905 157 -1.27079 -0.03293 -2.77598 167 -1.27079 -0.03293 -2.775983 176 -0.6621 -1.22306 -3.37669 186 -0.14256 -0.9309 -4.77829 196 -1.25738 -0.35804 -5.65263 206 -1.90326 0.845908 -4.96908 216 -2.37625 0.500655 -3.55667 226 -2.37625 0.500655 -3.556698 236 -1.90326 0.845908 4.969077 246 -1.25738 -0.35804 5.652626 256 -0.14256 -0.9309 4.778286 266 -0.6621 -1.22306 376687 271 2.55486 0.310327 -2.47022 291 3.724858 0.234512 2.47648 301 5.865695 0.292904 1.24083 311 0.86595 0.292904 1.24083 331 -3.37032 0.415736 -1.21199 341 -3.37032 0.415736 -1.21199 351 0.13047 -1.8286 -2.72565 361 -1.43439 -2	10	6	3.725793	0.226032	1.390567
126 -2.426 0.366188 0.685967 136 -2.426 0.366188 0.68597 146 -1.22287 0.138199 -1.40905 157 -1.27079 -0.03293 -2.77598 167 -1.27079 -0.03293 2.77598 176 -0.6621 -1.22306 -3.7669 186 -0.14256 -0.9309 -4.77829 196 -1.25738 -0.35804 -5.65263 206 -1.90326 0.845908 4.96098 216 -2.37625 0.500655 -3.5567 226 -2.37625 0.500655 -3.5567 236 -1.90326 0.845908 4.960977 246 -1.25738 -0.35804 5.652626 256 -0.14256 -0.9309 4.778286 266 -0.6621 -1.22306 3.376687 271 1.255486 0.310327 2.470217 281 2.55486 0.310327 2.470217 281 2.55486 0.239204 1.24083 311 5.865695 0.292904 1.24083 331 -3.37032 0.415736 -121199 351 0.130947 -1.58286 -2.72565 361 -1.4339 -2.00864 -3.43043 371 0.684144 -0.21577 -7.1127 381 0.276701 -1.85193	11	6	-1.22887	0.138199	1.409052
136 -2.426 0.366188 -0.68597 146 -1.22887 0.138199 -1.40905 157 -1.27079 -0.03293 -2.77598 167 -1.27079 -0.03293 2.775983 176 -0.6621 -1.22306 -3.37669 186 -0.14256 -0.9309 4.77829 196 -1.25738 -0.35804 -5.65263 206 -1.90326 0.845908 -4.96908 216 -2.37625 0.500655 -3.55678 226 -2.37625 0.500655 -3.55698 236 -1.90326 0.845908 4.969077 246 -1.25738 -0.35804 5.652626 256 -0.6621 -1.22306 -3.376687 271 1.255486 0.310327 2.470217 281 1.255486 0.310327 2.470217 281 1.255486 0.292904 1.240836 311 5.865695 0.292904 1.240826 321 3.724858 0.234512 2.476481 331 -3.37032 0.415736 -1.21199 341 -3.37032 0.415736 -1.21199 351 0.130947 -1.58286 -2.72565 361 -1.43439 -2.00864 -3.34043 371 0.864144 -0.21577 4.71127 381 0.226701 <td>12</td> <td>6</td> <td>-2.426</td> <td>0.366188</td> <td>0.685967</td>	12	6	-2.426	0.366188	0.685967
146-1.22887 0.138199 -1.40905157-1.27079-0.03293-2.77598167-1.27079-0.032932.775983176-0.6621-1.22306-3.37669186-0.14256-0.9309-4.77829196-1.25738-0.35804-5.65263206-1.903260.845908-4.96908216-2.376250.500655-3.5567226-2.376250.5006553.556698236-1.903260.8459084.969077246-1.25738-0.358045.652626256-0.14256-0.93094.778286266-0.6621-1.223063.3766872711.2554860.3103272.4702172811.2554860.3103272.4702172811.2554860.3103272.4702172811.2554860.232904-1.240833115.8656950.292904-1.2408263213.7248580.2345122.476481331-3.370320.4157361.21198341-3.370320.4157361.211983510.130947-1.58286-2.72655361-1.43439-2.00864-3.430433710.68414-0.21577-4.711273810.256701-1.85193-5.211839 <td< td=""><td>13</td><td>6</td><td>-2.426</td><td>0.366188</td><td>-0.68597</td></td<>	13	6	-2.426	0.366188	-0.68597
157 -1.27079 -0.03293 -2.77598 167 -1.27079 -0.03293 2.775983 176 -0.6621 -1.22306 -3.37669 186 -0.14256 -0.9309 -4.77829 196 -1.25738 -0.35804 -5.65263 206 -1.90326 0.845908 -4.96908 216 -2.37625 0.500655 -3.5567 226 -2.37625 0.500655 -3.5567 236 -1.90326 0.845908 4.969077 246 -1.25738 -0.35804 5.652626 256 -0.14256 -0.9309 4.778286 266 -0.6621 -1.22306 3.376687 271 1.255486 0.310327 2.470217 281 1.255486 0.310327 2.470217 281 1.255486 0.234512 -2.47648 301 5.865695 0.292904 -1.240836 311 3.7032 0.415736 -1.21199 341 -3.37032 0.415736 -1.21199 351 0.130947 -1.82193 -5.2118 391 0.6351 -4.90394 371 0.684414 -0.21577 -4.71127 381 0.256701 -1.85193 -5.2118 391 -0.87161 -0.7597 -6.63571 401 -2.715578 1.210694 <td< td=""><td>14</td><td>6</td><td>-1.22887</td><td>0.138199</td><td>-1.40905</td></td<>	14	6	-1.22887	0.138199	-1.40905
167 -1.27079 -0.03293 2.775983 17 6 -0.6621 -1.22306 -3.37669 18 6 -0.14256 -0.9309 -4.77829 19 6 -1.25738 -0.35804 -5.55263 20 6 -1.90326 0.845908 -4.96908 21 6 -2.37625 0.500655 -3.5567 22 6 -2.37625 0.500655 3.556698 23 6 -1.90326 0.845908 4.969077 24 6 -1.25738 -0.35804 5.652626 25 6 -0.6621 -1.22306 3.376687 27 1 1.255486 0.310327 2.470217 28 1 1.255486 0.310327 2.47022 29 1 3.724858 0.234512 -2.47648 30 1 5.865695 0.292904 1.240826 32 1 3.724858 0.234512 2.476481 33 1 -3.37032 0.415736 -1.21198 34 1 -3.37032 0.415736 -1.21198 34 1 -3.37032 0.415736 -1.21198 35 1 0.13047 -1.58286 -2.72565 36 1 -1.43439 -2.00864 -3.43043 37 1 0.684414 -0.21577 -4.71127 38 1 0.256701 -1.85193 -5.2118 39 1 -0.7578 1.210694 -5.84936 <td>15</td> <td>7</td> <td>-1.27079</td> <td>-0.03293</td> <td>-2.77598</td>	15	7	-1.27079	-0.03293	-2.77598
176 -0.6621 -1.22306 -3.37669 18 6 -0.14256 -0.9309 -4.77829 19 6 -1.25738 -0.35804 -5.65263 20 6 -1.90326 0.845908 -4.96908 21 6 -2.37625 0.500655 -3.5567 22 6 -2.37625 0.500655 -3.5567 22 6 -2.37625 0.500655 -3.5567 23 6 -1.90326 0.845908 4.969077 24 6 -1.25738 -0.35804 5.652626 25 6 -0.14256 -0.9309 4.778286 26 6 -0.6621 -1.22306 3.376687 27 1 1.255486 0.310327 2.470217 28 1 1.255486 0.310327 2.470217 28 1 1.255486 0.234512 2.47648 30 1 5.865695 0.292904 1.240826 32 1 3.724858 0.234512 2.47648 33 1 -3.37032 0.415736 -1.21199 34 1 -3.37032 0.415736 -1.21199 34 1 -3.37032 0.415736 -1.21199 35 1 0.130947 -1.58286 -2.72565 36 1 -1.43439 -2.00864 -3.43043 37 1 0.687161 -0.07597 -6.63571 40 1 -2.01828 -1.3146 -5.81857	16	7	-1.27079	-0.03293	2.775983
186 -0.14256 -0.9309 4.77829 196 -1.25738 -0.35804 -5.65263 206 -1.90326 0.845908 4.96908 216 -2.37625 0.500655 3.5567 226 -2.37625 0.500655 3.556698 236 -1.90326 0.845908 4.969077 246 -1.25738 -0.3804 5.652626 256 -0.14256 -0.9309 4.778286 266 -0.6621 -1.22306 3.376687 271 1.255486 0.310327 2.470217 281 1.255486 0.310327 2.470217 281 3.724858 0.234512 -2.47648 301 5.865695 0.292904 -1.24083 311 5.865695 0.292904 1.240826 321 3.724858 0.234512 2.476481 331 -3.37032 0.415736 1.211989 341 -3.37032 0.415736 1.211989 341 0.256701 -1.85193 -5.2118 391 0.684414 0.21577 -4.71127 381 0.256701 -1.85193 -5.2118 391 -0.87161 -0.07597 -6.63571 401 -2.75578 1.210694 -5.81857 411 -1.7809 1.66351 4.900387 451 -2.75578	17	6	-0.6621	-1.22306	-3.37669
196 -1.25738 -0.35804 -5.65263 206 -1.90326 0.845908 -4.96908 216 -2.37625 0.500655 -3.5567 226 -2.37625 0.500655 3.55698 236 -1.90326 0.845908 4.969077 246 -1.25738 -0.35804 5.652626 256 -0.14256 -0.9309 4.778286 266 -0.6621 -1.22306 3.376687 271 1.255486 0.310327 2.470217 281 1.255486 0.310327 2.47022 291 3.724858 0.234512 2.476481 301 5.865695 0.292904 1.240826 321 3.724858 0.234512 2.476481 331 -3.37032 0.415736 1.211989 341 -3.37032 0.415736 1.21199 351 0.130947 -1.82866 -2.72565 361 -1.43439 -2.00864 -3.43043 371 0.684414 -0.21577 -4.71127 381 0.225701 -1.85193 -5.2118 391 -0.87161 -0.07597 -6.63571 401 -2.75578 1.210694 -5.49366 431 -2.75578 1.210694 -5.49356 441 -3.20248 -0.22904 3.611474 451 -2.75578 <td>18</td> <td>6</td> <td>-0.14256</td> <td>-0.9309</td> <td>-4.77829</td>	18	6	-0.14256	-0.9309	-4.77829
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	6	-1.25738	-0.35804	-5.65263
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	6	-1.90326	0.845908	-4.96908
226 -2.37625 0.500655 3.556698 236 -1.90326 0.845908 4.969077 246 -1.25738 -0.35804 5.652626 256 -0.14256 -0.9309 4.778286 266 -0.6621 -1.22306 3.376687 271 1.255486 0.310327 2.470217 281 1.255486 0.310327 -2.47022 291 3.724858 0.234512 -2.47648 301 5.865695 0.292904 1.240826 321 3.724858 0.234512 2.476481 331 -3.37032 0.415736 1.211989 341 -3.37032 0.415736 -1.21199 351 0.130947 -1.58286 -2.72565 361 -1.43439 -2.00864 -3.43043 371 0.684414 -0.21577 -4.71127 381 0.256701 -1.85193 -5.2118 391 -0.87161 -0.07597 -6.63571 401 -2.75578 1.210694 -5.54936 431 -2.75578 1.210694 -5.54936 431 -2.75578 1.200694 -5.64936 441 -3.20248 -0.22904 -3.61147 451 -2.75578 1.210694 5.549358 491 -0.87161 -0.07597 6.635705 501 -2.01828	21	6	-2.37625	0.500655	-3.5567
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	6	-2.37625	0.500655	3.556698
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	6	-1.90326	0.845908	4.969077
256 -0.14256 -0.9309 4.778286 266 -0.6621 -1.22306 3.376687 271 1.255486 0.310327 2.470217 281 1.255486 0.310327 2.247022 291 3.724858 0.234512 -2.47648 301 5.865695 0.292904 -1.24083 311 5.865695 0.292904 -1.24083 321 3.724858 0.234512 2.476481 331 -3.37032 0.415736 1.211989 341 -3.37032 0.415736 -1.21199 351 0.130947 -1.58286 -2.72565 361 -1.43439 -2.00864 -3.43043 371 0.684414 -0.21577 4.71127 381 0.256701 -1.85193 -5.2118 391 -0.87161 -0.07597 -6.63571 401 -2.75578 1.210694 -5.54936 431 -2.75125 1.399822 -3.06752 441 -3.20248 -0.22904 -3.61147 451 -2.75125 1.399822 3.067519 461 -3.20248 -0.22904 -3.61147 471 -1.17809 1.66351 4.900387 481 -2.75125 1.399822 3.06752 491 -0.87161 -0.07597 6.635705 501 -2.01828 <td>24</td> <td>6</td> <td>-1.25738</td> <td>-0.35804</td> <td>5.652626</td>	24	6	-1.25738	-0.35804	5.652626
266 -0.6621 -1.22306 3.376687 27 1 1.255486 0.310327 2.470217 28 1 1.255486 0.310327 -2.47022 29 1 3.724858 0.234512 -2.47648 30 1 5.865695 0.292904 -1.24083 31 1 5.865695 0.292904 1.240826 32 1 3.724858 0.234512 2.476481 33 1 -3.37032 0.415736 1.211989 34 1 -3.37032 0.415736 -1.21199 35 1 0.130947 -1.58286 -2.72565 36 1 -1.43439 -2.00864 -3.43043 37 1 0.684414 -0.21577 -4.71127 38 1 0.256701 -1.8193 -5.2118 39 1 -0.87161 -0.07597 -6.63571 40 1 -2.01828 -1.13146 -5.81857 41 1 -1.17809 1.66351 -4.90039 42 1 -2.75578 1.210694 -5.54936 43 1 -2.75578 1.210694 -5.54936 43 1 -2.75578 1.210694 -5.49358 49 1 -0.87161 -0.07597 6.635705 50 1 -2.01828 -1.13146 5.818569 51 1 0.63511 4.900387 45 1 -2.01828 -1.13146 5.818569 51 </td <td>25</td> <td>6</td> <td>-0.14256</td> <td>-0.9309</td> <td>4.778286</td>	25	6	-0.14256	-0.9309	4.778286
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	6	-0.6621	-1.22306	3.376687
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	1	1.255486	0.310327	2.470217
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	1	1.255486	0.310327	-2.47022
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	1	3.724858	0.234512	-2.47648
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	1	5.865695	0.292904	-1.24083
321 3.724858 0.234512 2.476481 33 1 -3.37032 0.415736 1.211989 34 1 -3.37032 0.415736 -1.21199 35 1 0.130947 -1.58286 -2.72565 36 1 -1.43439 -2.00864 -3.43043 37 1 0.684414 -0.21577 -4.71127 38 1 0.256701 -1.85193 -5.2118 39 1 -0.87161 -0.07597 -6.63571 40 1 -2.01828 -1.13146 -5.81857 41 1 -1.17809 1.66351 -4.90039 42 1 -2.75578 1.210694 -5.54936 43 1 -2.75125 1.399822 -3.06752 44 1 -3.20248 -0.22904 -3.61147 45 1 -2.75125 1.399822 3.067519 46 1 -3.20248 -0.22904 3.611474 47 1 -1.17809 1.66351 4.900387 48 1 -2.75578 1.210694 5.549358 49 1 -0.87161 -0.07597 6.635705 50 1 -2.01828 -1.13146 5.818569 51 1 0.684414 -0.21577 4.711265 52 1 0.256701 -1.85193 5.211803 53 1 0.130947 -1.58286 2.725654 54 1 -1.43439 -2.00864 3.430429 <td>31</td> <td>1</td> <td>5.865695</td> <td>0.292904</td> <td>1.240826</td>	31	1	5.865695	0.292904	1.240826
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	1	3.724858	0.234512	2.476481
341 -3.37032 0.415736 -1.21199 35 1 0.130947 -1.58286 -2.72565 36 1 -1.43439 -2.00864 -3.43043 37 1 0.684414 -0.21577 -4.71127 38 1 0.256701 -1.85193 -5.2118 39 1 -0.87161 -0.07597 -6.63571 40 1 -2.01828 -1.13146 -5.81857 41 1 -1.17809 1.66351 -4.90039 42 1 -2.75578 1.210694 -5.54936 43 1 -2.75125 1.399822 -3.06752 44 1 -3.20248 -0.22904 -3.61147 45 1 -2.75578 1.210694 5.549358 49 1 -0.87161 -0.07597 6.635705 50 1 -2.01828 -1.13146 5.818569 51 1 0.684414 -0.21577 4.711265 52 1 0.256701 -1.85193 5.211803 53 1 0.130947 -1.58286 2.725654 54 1 -1.43439 -2.00864 3.430429	33	1	-3.37032	0.415736	1.211989
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	1	-3.37032	0.415736	-1.21199
361 -1.43439 -2.00864 -3.43043 37 1 0.684414 -0.21577 -4.71127 38 1 0.256701 -1.85193 -5.2118 39 1 -0.87161 -0.07597 -6.63571 40 1 -2.01828 -1.13146 -5.81857 41 1 -1.17809 1.66351 -4.90039 42 1 -2.75578 1.210694 -5.54936 43 1 -2.75125 1.399822 -3.06752 44 1 -3.20248 -0.22904 -3.61147 45 1 -2.75125 1.399822 3.067519 46 1 -3.20248 -0.22904 3.611474 47 1 -1.17809 1.66351 4.900387 48 1 -2.75578 1.210694 5.549358 49 1 -0.87161 -0.07597 6.635705 50 1 -2.01828 -1.13146 5.818569 51 1 0.684414 -0.21577 4.711265 52 1 0.256701 -1.85193 5.211803 53 1 0.130947 -1.58286 2.725654 54 1 -1.43439 -2.00864 3.430429	35	1	0.130947	-1.58286	-2.72565
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	1	-1.43439	-2.00864	-3.43043
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	1	0.684414	-0.21577	-4.71127
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	1	0.256701	-1.85193	-5.2118
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39	1	-0.87161	-0.07597	-6.63571
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	1	-2.01828	-1.13146	-5.81857
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	1	-1.17809	1.66351	-4.90039
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42	1	-2.75578	1.210694	-5.54936
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43	1	-2.75125	1.399822	-3.06752
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44	1	-3.20248	-0.22904	-3.61147
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45	1	-2.75125	1.399822	3.067519
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46	1	-3.20248	-0.22904	3.611474
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47	1	-1.17809	1.66351	4.900387
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48	1	-2.75578	1.210694	5.549358
501-2.01828-1.131465.8185695110.684414-0.215774.7112655210.256701-1.851935.2118035310.130947-1.582862.725654541-1.43439-2.008643.430429	49	1	-0.87161	-0.07597	6.635705
5110.684414-0.215774.7112655210.256701-1.851935.2118035310.130947-1.582862.725654541-1.43439-2.008643.430429	50	1	-2.01828	-1.13146	5.818569
5210.256701-1.851935.2118035310.130947-1.582862.725654541-1.43439-2.008643.430429	51	1	0.684414	-0.21577	4.711265
53 1 0.130947 -1.58286 2.725654 54 1 -1.43439 -2.00864 3.430429	52	1	0.256701	-1.85193	5.211803
54 1 -1.43439 -2.00864 3.430429	53	1	0.130947	-1.58286	2.725654
	54	1	-1.43439	-2.00864	3.430429

1,5-BPA (Ground):	$E(R\omega B97X-D) = -10$	40.855008 hartree			
Center number	Atomic number	Coordinate (Angstroms)			
		Х	Y	Z	
1	6	-1.34437	-0.19086	-0.37847	
2	6	-0.51215	-1.31755	-0.08835	
3	6	0.806801	-1.09378	0.299266	
4	6	1.344367	0.190856	0.378472	
5	6	0.512147	1.317554	0.088349	
6	6	-0.8068	1.09378	-0.29927	
7	6	-2.71704	-0.40494	-0.71175	
8	6	-3.22694	-1.66303	-0.73477	
9	6	-2.39883	-2.79168	-0.48152	
10	6	-1.07154	-2.64685	-0.18762	
11	6	2.717041	0.404943	0.711753	
12	6	3.22694	1.663033	0.734766	
13	6	2.398829	2.791677	0.481516	
14	6	1.07154	2.646847	0.18762	
15	7	0.206632	3.742393	-0.04231	
16	7	-0.20663	-3.74239	0.042313	
17	6	-0.70952	4.021025	1.067802	
18	6	-1.84391	4.930376	0.610604	
19	6	-1.29101	6.219973	0.00432	
20	6	-0.26413	5.901009	-1.08204	
21	6	0.815601	4.962515	-0.55074	
22	6	-0.8156	-4.96252	0.550738	
23	6	0.264132	-5.90101	1.082038	
24	6	1.291006	-6.21997	-0.00432	
25	6	1.84391	-4.93038	-0.6106	
26	6	0.709519	-4.02103	-1.0678	
27	1	1.428172	-1.9428	0.559475	
28	1	-1.42817	1.942798	-0.55948	
29	1	-3.34244	0.455369	-0.92449	
30	1	-4.27288	-1.82434	-0.97098	
31	1	-2.83359	-3.78146	-0.54984	
32	1	3.342437	-0.45537	0.924489	
33	1	4.272877	1.824339	0.970982	
34	1	2.833591	3.78146	0.549839	
35	1	-1.10264	3.078345	1.450262	
36	1	-0.15834	4.502076	1.896741	
37	1	-2.44298	4.397645	-0.13668	
38	1	-2.49834	5.151064	1.458978	
39	1	-2.1	6.83532	-0.3989	
40	1	-0.80688	6.808071	0.794542	
41	1	-0.76022	5.416222	-1.92947	
42	1	0.202272	6.818503	-1.45297	
43	1	1.513834	4.694196	-1.34658	

Table S5. Atom coordinates and absolute energy levels for the ground state of 1,5-bis(piperidyl)anthracene (**1,5-BPA**) obtained from theoretical calculations.

44	1	1.391006	5.488772	0.234568
45	1	-1.51383	-4.6942	1.346583
46	1	-1.39101	-5.48877	-0.23457
47	1	0.76022	-5.41622	1.929469
48	1	-0.20227	-6.8185	1.452968
49	1	2.099995	-6.83532	0.398903
50	1	0.806883	-6.80807	-0.79454
51	1	2.442982	-4.39765	0.136677
52	1	2.498339	-5.15106	-1.45898
53	1	1.102638	-3.07835	-1.45026
54	1	0.158341	-4.50208	-1.89674

Table S6. Atom coordinates and absolute energy levels for the excited state of 1,5bis(piperidyl)anthracene (1,5-BPA) obtained from theoretical calculations

		(Coordinate (Angstrom	s)
Center number	Atomic number	Х	Y	Z
1	6	-1.36754	-0.18951	-0.35188
2	6	-0.54205	-1.32899	-0.05887
3	6	0.789123	-1.10428	0.321913
4	6	1.367535	0.189505	0.351882
5	6	0.542054	1.328994	0.058874
6	6	-0.78912	1.104277	-0.32191
7	6	-2.72338	-0.38183	-0.62543
8	6	-3.28706	-1.6641	-0.61508
9	6	-2.49881	-2.77184	-0.37624
10	6	-1.11349	-2.62805	-0.14112
11	6	2.723382	0.38183	0.625434
12	6	3.287057	1.6641	0.615078
13	6	2.498807	2.771835	0.376236
14	6	1.11349	2.628047	0.141121
15	7	0.282695	3.745387	0.002425
16	7	-0.2827	-3.74539	-0.00243
17	6	-0.72676	3.954305	1.044754
18	6	-1.86632	4.822509	0.526716
19	6	-1.32855	6.148243	-0.01177
20	6	-0.22009	5.899093	-1.03392
21	6	0.867633	4.994145	-0.45787
22	6	-0.86763	-4.99415	0.457873
23	6	0.220091	-5.89909	1.033924
24	6	1.328553	-6.14824	0.011769
25	6	1.866317	-4.82251	-0.52672
26	6	0.726763	-3.95431	-1.04475
27	1	1.397635	-1.94588	0.632356
28	1	-1.39764	1.945878	-0.63236
29	1	-3.34832	0.481853	-0.82736
30	1	-4.34279	-1.78964	-0.82642

1.5-BPA (Excited): $E(TD-\omega B97X-D) = -1040738666$ hartree

31	1	-2.93524	-3.7615	-0.42287
32	1	3.348318	-0.48185	0.827363
33	1	4.342791	1.789637	0.826424
34	1	2.935241	3.761495	0.422866
35	1	-1.09585	2.986388	1.381025
36	1	-0.25347	4.447223	1.912644
37	1	-2.38856	4.282084	-0.27094
38	1	-2.58632	4.995198	1.331904
39	1	-2.13329	6.740413	-0.45593
40	1	-0.92384	6.735598	0.822467
41	1	-0.63912	5.41515	-1.92246
42	1	0.229559	6.843716	-1.35408
43	1	1.611476	4.769409	-1.22433
44	1	1.381577	5.524302	0.365277
45	1	-1.61148	-4.76941	1.224331
46	1	-1.38158	-5.5243	-0.36528
47	1	0.63912	-5.41515	1.922456
48	1	-0.22956	-6.84372	1.354076
49	1	2.133288	-6.74041	0.455932
50	1	0.923837	-6.7356	-0.82247
51	1	2.388556	-4.28208	0.270938
52	1	2.586322	-4.9952	-1.3319
53	1	1.095852	-2.98639	-1.38103
54	1	0.253466	-4.44722	-1.91264

(2) Frontier orbitals

Fig. S66. Frontier orbitals for the ground state of 1,4-BPA.

Fig. S67. Frontier orbitals for the excited state of 1,4-BPA.

Fig. S68. Frontier orbitals for the ground state of 1,5-BPA.

Fig. S69. Frontier orbitals for the excited state of 1,5-BPA.

(3) Optical transitions

Entry	State	Excitation energy [eV]	Transition wavelength [nm]	Oscillator strength	Main transition orbital	Contribution
					HOMO-4→LUMO+2	0.03
					HOMO-3→LUMO+1	0.02
	т	1.92	677	0	HOMO-1→LUMO	0.10
	11	1.65	077	0	HOMO-1→LUMO+2	0.02
					HOMO→LUMO	0.79
					HOMO←LUMO	0.04
					HOMO-5→LUMO+2	0.02
					HOMO-4→LUMO	0.10
	T_2	3.06	405	0	HOMO-1→LUMO	0.54
1 / DDA					HOMO→LUMO	0.04
1,4-DI A					HOMO→LUMO+2	0.29
(Oround state)	<u>S1</u>	3.41	364	0.17	HOMO→LUMO	1.00
state)			339	0	HOMO-3→LUMO	0.07
	T_3	3.66			HOMO-1→LUMO+1	0.04
					HOMO→LUMO+1	0.89
	T_4		322		HOMO-3→LUMO	0.41
		3.85		0	HOMO-2→LUMO	0.52
					HOMO→LUMO+1	0.06
	S_2	4.06	305	0.0055	HOMO-3→LUMO	0.18
					HOMO-2→LUMO	0.25
					HOMO-1→LUMO+1	0.03
					HOMO→LUMO+1	0.53
		0.95	1305	0	HOMO-3→LUMO+1	0.02
					HOMO-1→LUMO	0.08
	Т				HOMO→LUMO	0.74
	1				HOMO→LUMO+2	0.04
					HOMO-1←LUMO	0.02
					HOMO←LUMO	0.10
	$\underline{S_1}$	2.45	506	0.1477	HOMO→LUMO	1.00
					HOMO-4→LUMO	0.02
1,4-BPA					HOMO-1→LUMO	0.71
(Excited	T_2	2.49	498	0	HOMO→LUMO	0.03
state)					HOMO→LUMO+2	0.21
					HOMO→LUMO+3	0.03
	т	2.00	402	0	HOMO→LUMO+1	0.94
	13	5.09	402	0	HOMO→LUMO+8	0.06
				·	HOMO-3→LUMO	0.17
	S_2	3.65	340	0.0756	HOMO-2→LUMO	0.05
					HOMO→LUMO+1	0.78
	 -	2 75	221	0	HOMO-3→LUMO	0.70
	\mathbf{I}_4	5.75	331	0	HOMO-2→LUMO	0.30

Table S7. Excitation energies, oscillator strengths, main transition orbitals, and associated contributions calculated for the ground and excited state of **1,4-BPA** (ω B97X-D/6-311G(d,p)).

Table S8. Excitation energies, oscillator strengths, main transition orbitals, and associated contributions calculated for the ground and excited state of 1,5-BPA

Entry	State	Excitation energy [eV]	Transition wavelength [nm]	Oscillator strength	Main transition orbital	Contribution
	Tı	1.84	675	0	HOMO-4→LUMO+2	0.02
					HOMO-3→LUMO+1	0.02
					HOMO-2→LUMO	0.02
					HOMO-1→LUMO+2	0.04
					HOMO→LUMO	0.85
					HOMO←LUMO	0.05
		3.09	401	0	HOMO-5→LUMO+2	0.02
	T_2				HOMO-4→LUMO	0.11
- 1,5-BPA - (Ground state) -					HOMO-1→LUMO	0.53
					$\frac{\text{HOMO} \rightarrow \text{LUMO} + 2}{\text{HOMO} + 2}$	0.34
	<u> </u>	3.49	355	0.1986	HOMO→LUMO	1.00
	T ₃	3.69	336	0	HOMO- $3 \rightarrow LUMO$	0.08
					HOMO→LUMO+I	0.92
	T_4	3.83	324	0	HOMO-5→LUMO	0.04
					HOMO-3 \rightarrow LUMO	0.11
					HOMO $1 \rightarrow LUMO + 2$	0.76
					$HOMO \rightarrow LUMO+1$	0.02
					$HOMO \rightarrow LUMO+3$	0.04
					$\frac{110MO}{100MO} = 10MO$	0.03
	Тc	3.95	314	0	$HOMO_3 \rightarrow LUMO$	0.13
					$HOMO_1 \rightarrow UMO+2$	0.14
	15				HOMO \rightarrow LUMO+1	0.14
					HOMO \rightarrow LUMO+3	0.13
1,5-BPA (Excited state)		1.06	1169	0	HOMO-3→LUMO+1	0.02
					HOMO-2→LUMO	0.03
	T_1				HOMO-1→LUMO+2	0.03
					HOMO→LUMO	0.80
					HOMO←LUMO	0.12
	T ₂	2.63	472	0	HOMO-4→LUMO	0.07
					HOMO-1→LUMO	0.62
					HOMO→LUMO+2	0.31
	<u>S1</u>	2.85	435	0.2124	HOMO→LUMO	1.00
	T ₃	3.39	365	0	HOMO-2→LUMO	0.06
					HOMO→LUMO+1	0.94
	T ₄	3.53	352	0	HOMO-5→LUMO	0.12
					HOMO-2→LUMO	0.59
					HOMO-1→LUMO+2	0.10
					$HOMO \rightarrow LUMO + 1$	0.09
					$\frac{\text{HOMO} \rightarrow \text{LUMO} + 3}{\text{HOMO} \rightarrow \text{LUMO} + 3}$	0.10
	T ₅	3.73	332	0	HOMO-6→LUMO+2	0.02
					HOMO-3→LUMO	0.02
					HUMU- $3 \rightarrow LUMO$	0.79
					$HOMO = 1 \rightarrow LUMO + 2$	0.08
					$HOMO \rightarrow UMO + 2$	0.03
					110WIO→LUWIO+3	0.04

(*ω*B97X-D/6-311G(d,p)).

S7. References

(1) A. Sillen and Y. Engelborghs, *Photochem. Photobiol.*, 1998, **67**, 475-486.

- (2) (a) J.-D. Chai and M. Head-Gordon, *Phys. Chem. Chem. Phys.*, 2008, 10, 6615-6620; (b) R. Ditchfield, W. J. Hehre and J. A. Pople, *J. Chem. Phys.*, 1971, 54, 724-728; (c) W. J. Hehre, R. Ditchfield and J. A. Pople, *J. Chem. Phys.*, 1972, 56, 2257-2261; (d) P. C. Hariharan and J. A. Pople, *Theor. Chem. Acc.*, 1973, 28, 213-222; (e) P. C. Hariharan and J. A. Pople, *Mol. Phys.*, 1974, 27, 209-214.
- (3) (a) N. Mardirossian, J. A. Parkhill and M. Head-Gordon, *Phys. Chem. Chem. Phys.*, 2011, 13, 19325-19337; (b) D. Jacquemin, E. A. Perpète, I. Ciofini and C. Adamo, *Theor. Chem. Acc.*, 2011, 128, 127-136.
- (4) Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, Vreven, T.; Montgomery, J. A.; J. E. Peralta, Jr., F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.