Supporting information for:

A prominent dielectric material with extremely high-

temperature and reversible phase transition in the high

thermally stable perovskite-like architecture

Fang-Fang Wang, Cheng Chen, Yi Zhang, Heng-Yun Ye, Qiong Ye*, Da-Wei Fu* Ordered Matter Science Research Center, Southeast University, Nanjing 211189, P.R. China

Fig. S1 IR spectra of compound 1 recorded at various temperatures corresponding to the spectral range 4000- 450 cm⁻¹.

^{*}E-mail: dawei@seu.edu.cn, yeqiong@seu.edu.cn

Fig. S2 Solid- state UV- Vis reflectance spectrum of compound 1.

The UV- Vis absorption spectrum for compound 1 was recorded in reflectance mode in the solid state at room temperature. According to the spectrum, the wavelength absorption edge of compound 1 occurs at approximately 378 nm (3.3 eV).

Fig. S3 The PXRD curve for compound 1.

Fig. S4 Temperature- dependent cell parameters of compound 1. Compound 1 shows an obvious negative thermal expansion (NTE) along the a, b, c axes. For the lattice- volume change, the unit- cell volume of the HTP was converted into that of the RTP by dividing by four.

Fig. S5 The intensity of the IR spectra corresponding to the spectral ranges 1060-1230. The changes of the peaks near the 1180 cm⁻¹ are aroused by the deformations of the whole ring $\delta(R)$ of the imidazolium cations. Besides the intensity of the whole ring increases before the phase transition temperature, while above the phase transition temperature it decreases.

Bond lengths (Å) (RTP)			
Mn(1)-O(6)	2.151(2)	Mn(1)-O(5)	2.158(2)
Mn(1)-O(4)	2.164(2)	Mn(1)-O(1)	2.171(2)
Mn(1)-O(2)	2.186(2)	Mn(1)-O(3)	2.203(2)
Mn(2)-O(12)#1	2.144(2)	Mn(2)-O(10)#2	2.162(2)
Mn(2)-O(9)#3	2.171(2)	Mn(2)-O(8)#4	2.182(2)
Mn(2)-O(11)#5	2.190(2)	Mn(2)-O(7)	2.201(2)
O(8)-Mn(2)#5	2.182(2)	O(11)-Mn(2)#4	2.190(2)
O(9)-Mn(2)#6	2.171(2)	O(12)-Mn(2)#8	2.144(2)
O(10)-Mn(2)#7	2.162(2)		
Bond lengths(Å) (HTP)			
Mn(1)-O(1)#1'	2.163(7)	Mn(1)-O(1)#2'	2.163(7)
Mn(1)-O(1)	2.163(7)	Mn(1)-O(1)#3'	2.163(7)
Mn(1)-O(2)#2'	2.195(13)	Mn(1)-O(2)	2.195(13)
Mn(1)-O(2)#1'	2.195(13)	Mn(1)-O(2)#3'	2.195(13)
Mn(1)-Mn(1)#4'	6.2345(7)	Mn(1)-Mn(1)#5'	6.2345(7)
Mn(1)-Mn(1)#6'	6.2345(7)	Mn(1)-Mn(1)#7'	6.2345(7)
Bond angles (°) (RTP)			
O(6)-Mn(1)-O(5)	90.00(9)	O(6)-Mn(1)-O(4)	91.36(12)
O(5)-Mn(1)-O(4)	92.18(9)	O(6)-Mn(1)-O(1)	93.33(11)
O(5)-Mn(1)-O(1)	94.27(10)	O(4)-Mn(1)-O(1)	172.02(10)
O(6)-Mn(1)-O(2)	90.02(9)	O(5)-Mn(1)-O(2)	179.06(9)
O(4)-Mn(1)-O(2)	86.88(9)	O(1)-Mn(1)-O(2)	86.67(10)
O(6)-Mn(1)-O(3)	177.96(8)	O(5)-Mn(1)-O(3)	91.46(8)
O(4)-Mn(1)-O(3)	87.16(11)	O(1)-Mn(1)-O(3)	87.98(10)
O(2)-Mn(1)-O(3)	88.49(9)	O(12)#1-Mn(2)-O(10)#2	97.10(10)
O(12)#1-Mn(2)-O(9)#3	172.01(8)	O(10)#2-Mn(2)-O(9)#3	90.86(10)
O(12)#1-Mn(2)-O(8)#4	89.01(9)	O(10)#2-Mn(2)-O(8)#4	96.38(9)
O(9)#3-Mn(2)-O(8)#4	89.36(9)	O(12)#1-Mn(2)-O(11)#5	90.99(9)
O(10)#2-Mn(2)-O(11)#5	81.76(9)	O(9)#3-Mn(2)-O(11)#5	90.89(9)
O(8)#4-Mn(2)-O(11)#5	178.13(8)	O(12)#1-Mn(2)-O(7)	82.33(10)
O(10)#2-Mn(2)-O(7)	173.16(9)	O(9)#3-Mn(2)-O(7)	89.86(9)
O(8)#4-Mn(2)-O(7)	90.43(9)	O(11)#5-Mn(2)-O(7)	91.42(9)
C(1)-O(1)-Mn(1)	140.4(2)	C(2)-O(2)-Mn(1)	136.0(2)
C(3)-O(3)-Mn(1)	128.6(2)	C(4)-O(4)-Mn(1)	141.6(2)
C(5)-O(5)-Mn(1)	130.9(2)	C(6)-O(6)-Mn(1)	133.9(2)
C(1)-O(7)-Mn(2)	139.9(2)	C(2)-O(8)-Mn(2)#5	129.9(2)
C(3)-O(9)-Mn(2)#6	128.8(2)	C(4)-O(10)-Mn(2)#7	143.3(2)
C(5)-O(11)-Mn(2)#4	133.8(2)	C(6)-O(12)-Mn(2)#8	134.6(2)
Bond angles (°) (HTP)			
O(1)#1-Mn(1)-O(1)#2'	178.3(7)	O(1)#1-Mn(1)-O(1)	90.013(11)

Table S1 Selected bond lengths (Å) and angles (°) for the compound 1 $% \mathcal{A}^{(n)}$

	O(1)#2-Mn(1)-O(1)	90.013(12)	O(1)#1-Mn(1)-O(1)	#3'	90.013(12)
	O(1)#2-Mn(1)-O(1)#3'	90.013(12)	O(1)-Mn(1)-O(1)#3	,	178.3(7)
	O(1)#1-Mn(1)-O(2)#2'	95.4(14)	O(1)#2-Mn(1)-O(2)	#2'	83.0(13)
	O(1)-Mn(1)-O(2)#2'	97.1(10)	O(1)#3-Mn(1)-O(2)	#2'	84.6(10)
	O(1)#1-Mn(1)-O(2)	97.1(10)	O(1)#2-Mn(1)-O(2)		84.6(10)
	O(1)-Mn(1)-O(2)	83.0(13)	O(1)#3-Mn(1)-O(2)		95.4(14)
	O(2)#2-Mn(1)-O(2)	167.6(6)	O(1)#1-Mn(1)-O(2)	#1'	83.0(13)
	O(1)#2-Mn(1)-O(2)#1'	95.4(14)	O(1)-Mn(1)-O(2)#1	,	84.6(10)
	O(1)#3-Mn(1)-O(2)#1'	97.1(10)	O(2)#2-Mn(1)-O(2)	#1'	17.6(9)
	O(2)-Mn(1)-O(2)#1'	167.6(6)	O(1)#1-Mn(1)-O(2)	#3'	84.6(10)
	O(1)#2-Mn(1)-O(2)#3'	97.1(10)	O(1)-Mn(1)-O(2)#3	,	95.4(14)
	O(1)#3-Mn(1)-O(2)#3'	83.0(13)	O(2)#2-Mn(1)-O(2)	#3'	167.6(6)
	O(2)-Mn(1)-O(2)#3'	17.6(9)	O(2)#1-Mn(1)-O(2)	#3'	167.6(6)
	O(1)#1-Mn(1)-Mn(1)#4'	159.51(16)	O(1)#2-Mn(1)-Mn(1)#4'	20.49(16)
	O(1)-Mn(1)-Mn(1)#4'	110.47(17)	O(1)#3-Mn(1)-Mn(1)#4'	69.53(17)
	O(2)#2-Mn(1)-Mn(1)#4'	82.0(9)	O(2)-Mn(1)-Mn(1)#	4'	86.3(13)
	O(2)#1-Mn(1)-Mn(1)#4'	98.0(9)	O(2)#3-Mn(1)-Mn(1)#4'	93.7(13)
	O(1)#1-Mn(1)-Mn(1)#5'	20.49(16)	O(1)#2-Mn(1)-Mn(1)#5'	159.51(16)
	O(1)-Mn(1)-Mn(1)#5'	69.53(17)	O(1)#3-Mn(1)-Mn(1)#5'	110.47(17)
	O(2)#2-Mn(1)-Mn(1)#5'	98.0(9)	O(2)-Mn(1)-Mn(1)#	5'	93.7(13)
	O(2)#1-Mn(1)-Mn(1)#5'	82.0(9)	O(2)#3-Mn(1)-Mn(1)#5'	86.3(13)
	Mn(1)#4-Mn(1)-Mn(1)#5'	180.0	O(1)#1-Mn(1)-Mn(1)#6'	110.47(17)
	O(1)#2-Mn(1)-Mn(1)#6'	69.53(17)	O(1)-Mn(1)-Mn(1)#	6'	20.49(16)
	O(1)#3-Mn(1)-Mn(1)#6'	159.51(16)	O(2)#2-Mn(1)-Mn(1)#6'	93.7(13)
	O(2)-Mn(1)-Mn(1)#6'	82.0(9)	O(2)#1-Mn(1)-Mn(1)#6'	86.3(13)
	O(2)#3-Mn(1)-Mn(1)#6'	98.0(9)	Mn(1)#4-Mn(1)-Mn	(1)#6'	90.0
	Mn(1)#5-Mn(1)-Mn(1)#6'	90.0	O(1)#1-Mn(1)-Mn(1)#7'	69.53(17)
	O(1)#2-Mn(1)-Mn(1)#7'	110.47(17)	O(1)-Mn(1)-Mn(1)#	7'	159.51(16)
	O(1)#3-Mn(1)-Mn(1)#7'	20.49(16)	O(2)#2-Mn(1)-Mn(1)#7'	86.3(13)
	O(2)-Mn(1)-Mn(1)#7'	98.0(9)	O(2)#1-Mn(1)-Mn(1)#7'		93.7(13)
	O(2)#3-Mn(1)-Mn(1)#7'	82.0(9)	Mn(1)#4-Mn(1)-Mn	(1)#7'	90.0
	Mn(1)#5-Mn(1)-Mn(1)#7'	90.0	Mn(1)#6-Mn(1)-Mn	(1)#7'	180.0
#1	x-1,-y+1/2,z-1/2 #2 x-1	,y,z-1	#3 x,-y+1/2,z-1/2	#4 -x	x+1,y+1/2,-z+1/2
#5	5-x+1,y-1/2,-z+1/2 #6 x,-y	/+1/2,z+1/2	#7 x+1,y,z+1	#8 x+	-1,-y+1/2,z+1/2
#1	' y,-x+1,-z+1 #2' -y-	+1,x,-z+1	#3' -x+1,-y+1,z	#4'-2	x+3/2,y+1/2,-z+1
#5	5' -x+1/2,y-1/2,-z+1 #6' -x+	-3/2,y-1/2,-z+1	#7' -x+1/2,y+1/2,-z+1		

Table S2 Hydrogen bonds for compound 1 at different temperatures [Å and deg.]

	-		1 1		
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
RTP					
N(1)-H(1A)O(8)#6	0.86	1.95	2.792(4)	167.5	
N(1)-H(1A)O(2)#6	0.86	2.61	3.138(4)	120.4	

N(4)-H(4A)O(3)#9	0.86	1.94	2.803(4)	178.0	
N(4)-H(4A)O(9)#9	0.86	2.63	3.211(4)	126.3	
N(2)-H(2A)O(11)	0.97(5)	1.87(5)	2.829(4)	172(4)	
N(3)-H(3A)O(7)#10	0.96(6)	1.89(6)	2.851(4)	173(5)	
N(3)-H(3A)O(1)#10	0.96(6)	2.54(5)	3.180(4)	124(4)	
HTP					
N2-H2AO1#1	0.90	2.25	2.96(3)	134.8	
N2-H2AO2#1	0.90	2.44	3.25(6)	149.4	
N1-H1AO1#3	0.90	2.24	3.10(3)	158.6	
N1-H1AO1#4	0.90	2.51	3.26(3)	141.4	

Symmetry transformations used to generate equivalent atoms: #6 x, -y+1/2, z+1/2 #9 x, y+1, z

#10 -x+1,-y+1,-z+1 #1 y+1/2, x-1/2, z #3 -y+1/2, -x+1/2, z+1 #4 -x+1, -y, z+1