Supplementary information

Surface charge transfer induced p-CdS Nanoribbon/n-Si heterojunction as fastspeed self-driven photodetector

By Chao Xie, Fangze Li, Longhui Zeng, Linbao Luo, Li Wang, Chunyan Wu, Jiansheng Jie

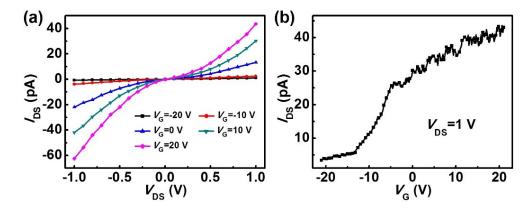


Fig. S1 (a) I_{DS} - V_{DS} characteristics of the FET measured at varied V_G ranging from -20 V to 20 V at a step of 10 V before coating with MoO₃ layer. (b) The transfer characteristic of the FET (V_{DS} =1 V) before coating with MoO₃ layer.

Calculation of the hole mobility/concentration of p-CdS NR: The hole mobility (μ_h) of the MoO₃-coated CdS NR FET can be estimated according to the formula: $g_m = \frac{\partial I_{DS}}{\partial V_G} = (Z/L)\mu_h C_0 V_{DS}$, where Z/L is the ratio of channel width to channel length and is equal to 1.15/12.5 for our configuration, and $C_0 = 1.15 \times 10^{-8}$ F/cm² is the gate capacitance per unit area. The transconductance (g_m) is deduced to be $\sim 0.39~\mu$ S by fitting the linear part of the I_{DS} - V_G curve at a fixed V_{DS} of 0.2 V (Inset in Fig. 2(b)). Based on these values, a hole mobility of $\mu_h = 1850~\text{cm}^2\text{V}^{-1}\text{s}^{-1}$ is obtained for as-prepared p-CdS NR. Then, the hole concentration (n_h) is calculated to be $6.62 \times 10^{17}~\text{cm}^{-3}$ based on the following relation: $n_h = 1/\rho q \mu_h$, where ρ is the channel electrical resistivity and p is the elementary charge. Similarly, the electron mobility (μ_e) and electron concentration (n_e) for u-CdS without MoO₃ coating can be estimated to be $7.8 \times 10^{-3}~\text{cm}^2\text{V}^{-1}\text{s}^{-1}$ and $2.11 \times 10^{15}~\text{cm}^{-3}$, respectively, based on Fig. S1.

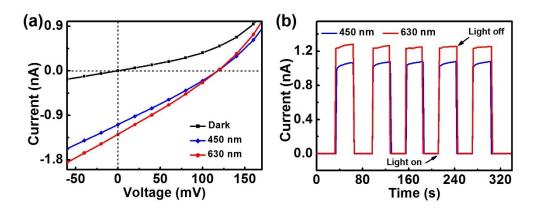


Fig. S2 (a) I-V curves of the p-CdS NR/n-Si heterojunction in dark and under illuminations with wavelength of 450 nm and 630 nm (light intensity: ~ 1.1 mWcm⁻²), respectively. (b) Time response of the heterojunction device to 450 nm and 630 nm light, respectively.

References

¹ J. S. Jie, W. J. Zhang, Y. Jiang and S. T. Lee, *Appl. Phys. Lett.*, 2006, **89**, 133118.

² S. M. Sze and K. K. Ng, John Wiley & Sons, Hoboken, NJ, 2007.