Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2015

Unravelling synthetic key parameters for the design of spin-crossover nanoparticles based on iron(II)-triazole coordination polymers: towards a control of the spin transition

Mónica Giménez-Marqués, M. Luisa García-Sanz de Larrea and Eugenio Coronado*.

Instituto de Ciencia Molecular, Universidad de Valencia, c/ Catedrático José Beltrán, 2, 46980 Paterna, Spain.

Supporting Information

General reverse-micelle protocol for the preparation of [Fe(Htrz)₂(trz)](BF₄)·H₂O (1) NPs.

- S1. Size analysis and elemental analysis.
- S2. Stabilization time for the Fe^{II} microemulsions as a function of the metal concentration (0.1–1.5 M).
- S3. Images of microemulsion stabilization.

Controlling size in [Fe(Htrz)₂(trz)](BF₄)·H₂O NPs: size effect of ω_0 variation.

- S4. Size analysis and elemental analysis.
- S5. XRPD analysis.
- S6. HR-TEM analysis.
- S7. AFM analysis.

References

General reverse-micelle protocol for the preparation of [Fe(Htrz)₂(trz)](BF₄)·H₂O (1) NPs.

[Fe]	Size (nm)	Elemental analysis	C [%]	N [%]	H [%]	S [%]	MW
0.5	25	experimental [Fe(Htrz) ₂ (trz)](BF ₄)·H ₂ O·(AOT) _{0.6}	33.57 34.18	22.39 19.93	4.49 4.97	3.21 3.04	635,79
1	15	experimental [Fe(Htrz) ₂ (trz)](BF ₄)·H ₂ O·(AOT) _{0.02}	19.87 20.51	32.31 33.64	3.13 2.62	0.22 0.17	374,73
1.5	11	experimental [Fe(Htrz) ₂ (trz)](BF ₄)·H ₂ O·(AOT) _{0.04}	19.08 21.29	30.85 32.86	2.39 2.75	0.41 0.33	383,62

Table S1. Size (DLS-based) and elemental analysis for NPs synthesized with different [Fe].

Figure S2. Representation of the stabilization time for the Fe^{II} microemulsions as a function of the metal concentration (0.1–1.5 M) with $\omega_0 = 5$ (the black line serves as a reference to linearity).

Figure S3. Pictures of the two micellar solutions before (a) and after (b) micelle stabilization upon stirring showing the difference in transparency.

Controlling size in [Fe(Htrz)₂(trz)](BF₄) NPs: size effect of ω₀ variation.

Table S4. Table of size and elemental analysis for samples 1.16, 1.10 and 1.2.

Sample	Size (nm)	Elemental analysis	C [%]	N [%]	H [%]	S [%]	MW
1.16	16	experimental	25.59	28.93	3.48	1.77	
1.10	10	experimental	26.24	28.82	3.38	1.66	

1.2	4	experimental	29.63	26.13	3.99	2.54	
Theo	oretical	[Fe(Htrz) ₂ (trz)](BF ₄)·H ₂ O·(AOT) _{0.2}	26,74	28,06	6,68	0,71	449,25
Theo	oretical	$[Fe(Htrz)_2(trz)](BF_4) \cdot H_2O \cdot (AOT)_{0.3}$	28,87	25,25	4,06	1,93	499,21

Figure S5. X-ray powder diffraction (XRPD) patterns of samples **1.6** (16 nm), **1.10** (10 nm) and **1.2** (4 nm) obtained on powdered samples. The patterns of the NPs bearing different sizes are compared with the experimental pattern of microcrystalline powder of $[Fe(Htrz)_2(trz)](BF_4) \cdot H_2O(1)$ obtained as bulk.¹

Figure S6. HR-TEM image of sample **1a** (*ca.* 16 nm) showing the two different orientations (parallel or standing) after sample deposition by drop casting. These two different orientations have been also observed by some of us in self-assembled monolayers of these NPs, using high-angle annular dark field scanning transmission electron microscopy (STEM-HAADF).²

Figure S7. AFM (topography (a) and phase (b)) images measured in tapping mode for SCO-NPs (sample 1.16, 16 nm) deposited by drop casting on native SiO₂.

Silicon substrate cleaning process. Substrates of *ca.* 1 cm² were sonicated for 10 minutes in a freshly-prepared H_2O_2 :NH₄OH:H₂O (1:1:2) solution (x3 times). The substrates are then rinsed with mili-Q water, sonicated 5 minutes in mili-Q water (x2 times) and finally dried under a N₂ stream (*ultrasonic cleaner*: BRANASONIC MTH-5510 ultrasonic cleaner, power 185 W).

Drop casting deposition: A drop of the SCO-NP suspension is dropped on top of the substrate and left unperturbed for 30 second. Then, the substrate is rinsed with *n*-octane and dried under a N_2 stream.

References

¹ A. Grosjean, P. Négrier, P. Bordet, C. Etrillard, D. Mondieig, S. Pechev, E. Lebraud, J.-F. Létard, P. Guionneau, *Chem. Commun.* **2011**, *47*, 12382.

² J. Dugay, M. Giménez-Marqués, T. Kozlova, H. W. Zandbergen, E. Coronado, H. S. J. van der Zant, *Adv. Mater.* 2015, 27, 1288.