Supporting Information

Low Operating Voltage and Low Bias Stress in Top-Contact SnCl₂Pc/ CuPc Heterostructure based Bilayer Ambipolar Organic Field-effect Transistors

Sk. Md. Obaidulla¹, and P. K. Giri ^{1,2*}

¹Department of Physics, Indian Institute of Technology Guwahati, Guwahati -781039, India ²Centre for Nano Technology, Indian Institute of Technology Guwahati, Guwahati -781039, India

*E-mail: giri@iitg.ernet.in

Fig. S1. X-ray diffraction (XRD) patterns of SnCl_2Pc (60 nm) deposited on different thicknesses of CuPc layer at a subtatre temperature, $T_d = 60$ °C. Inset shows a schemaic of the layer configuration (60 nm SnCl_2Pc as top layer and CuPc with varying thickness as bottom layer) used for the XRD measurement.

Fig. S2. The mobility (μ) distribution of representative devices for different thicknesses of CuPc layers for p-channel (left panel) and n-channel (right panel). Average μ and its standard deviation are mentioned in each case.

Fig. S3. Transfer characteristics of top-contact OFET with PMMA/Al₂O₃ bilayer dielectric at room temperature before and after an applied cyclic gate-bias stress (BS) for 1 hr in (a) p-channel of $V_{GS} = -10 \text{ V}(V_{DS} = -4 \text{ V})$ and (b) n-channel of $V_{GS} = 10 \text{ V}(V_{DS} = 4 \text{ V})$ devices.

Fig. S4. (a) AFM image of PMMA layer. Surface roughness (R_q) is shown as inset. (b) Leakagecurrent density (J) as function of bias voltage for PMMA (100 nm)/Al₂O₃ (15 nm) bilayer gate dielectric.