Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

Sandwich-structured Fe₂O₃@SiO₂@Au nanoparticles with magnetoplasmonic responses

Zhongyu Cai,^{*a,b**} Eunice S. P. Leong,^{*c*} Zhigang Wang,^{*a*} Wenxin Niu,^{*a*} Weiqing Zhang,^{*a*} Serge Ravaine,^{*d*} 5 Nikolai L. Yakovlev, ^{*c*} Yan Jun Liu,^{*c**} Jinghua Teng,^{*c**} Xianmao Lu^{*a**}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Electronic Supplementary material

Fig. S1 SEM image of relatively monodisperse α -Fe₂O₃NPs with an aspect ratio of 6 fabricated via the forced hydrolysis method.

Table S1	. The average	size and siz	e distribution	of α-Fe ₂ O ₃ NPs
15	C C			

Aspect	$R(\sigma)$ Length (σ)	Polydispersity Width(σ) Polydispersity			
ratio	(nm)	of Length (%)	(nm)	of Width (%)	
3	178.5 (3.2)	1.8%	59.3	4.9%	
			(2.9)		
4	192.4 (3.9)	2.0%	48.8	4.3%	
			(2.1)		
6	218.1(4.0)	1.8%	36.6	6%	
			(2.2)		
9	270.1 (10.0)	3.7%	30.0	4.7%	
			(1.4)		

 $\begin{array}{l} \mbox{Fig. S2 XPS spectra of α-Fe_2O_3@SiO_2NPs: (a) Fe 2p, (b) O 1s and (c) \\ survey scan. The α-Fe_2O_3@SiO_2NPs shows relatively weak Fe 2p_{1/2} and \\ 2p_{3/2} peaks (Figure S2a). This is caused by the coating of SiO_2 on the \\ surface of α-Fe_2O_3NPs. The XPS spectra confirmed the existence of \\ Fe_2O_3@SiO_2. \end{array}$

15 Fig. S4 TEM images of Fe₂O₃@Au NPs with aspect ratios (a-b) 3 and (cd) 4, respectively.

We took photographs of γ -Fe₂O₃@SiO₂@Au NPs solution before and after adsorption and separation by a magnet. As shown below, the clear solution obtained after the separation by a 20 magnet, indicating the magnetic property of γ -Fe₂O₃@SiO₂@Au NPs.

Fig. S5 γ -Fe₂O₃@SiO₂@Au NPs solution (a) before and (b) after adsorption and separation by a magnet.

Fig. S6 Measured transmission spectra of γ -Fe₂O₃@SiO₂@Au ellipsoids in a magnetic field with different angles along their longitudinal direction.

Fig. S3 Electron diffraction patterns of γ -Fe₂O₃@SiO₂.

2 | Journal Name, [year], [vol], oo-oo