Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

Sandwich-structured Fe₂O₃@SiO₂@Au nanoparticles with magnetoplasmonic responses

Zhongyu Cai,^{a,b*} Eunice S. P. Leong,^c Zhigang Wang,^a Wenxin Niu,^a Weiqing Zhang,^a Serge Ravaine,^d 5 Nikolai L. Yakovlev, ^c Yan Jun Liu,^{c*} Jinghua Teng,^{c*} Xianmao Lu^{a*}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Electronic Supplementary material

Fig. S1 SEM image of relatively monodisperse α -Fe₂O₃NPs with an aspect ratio of 6 fabricated via the forced hydrolysis method.

	Table S1.	The average	size and	size c	distribution	of α -Fe ₂ O ₃	NPs
15		C					

	Aspect	$R(\sigma)$ Length (σ)	Polydispersity	$\text{Width}(\sigma)$	Polydispersity
_	ratio	(nm)	of Length (%)	(nm)	of Width (%)
	3	178.5 (3.2)	1.8%	59.3	4.9%
				(2.9)	
	4	192.4 (3.9)	2.0%	48.8	4.3%
				(2.1)	
	6	218.1(4.0)	1.8%	36.6	6%
				(2.2)	
	9	270.1 (10.0)	3.7%	30.0	4.7%
				(1.4)	
_					

 $\begin{array}{l} \mbox{Fig. S2 XPS spectra of α-Fe_2O_3@SiO_2NPs: (a) Fe 2p, (b) O 1s and (c) \\ survey scan. The α-Fe_2O_3@SiO_2NPs shows relatively weak Fe 2p_{1/2} and \\ 2p_{3/2} peaks (Figure S2a). This is caused by the coating of SiO_2 on the \\ surface of α-Fe_2O_3NPs. The XPS spectra confirmed the existence of \\ Fe_2O_3@SiO_2. \end{array}$

15 Fig. S4 TEM images of Fe₂O₃@Au NPs with aspect ratios (a-b) 3 and (cd) 4, respectively.

We took photographs of γ -Fe₂O₃@SiO₂@Au NPs solution before and after adsorption and separation by a magnet. As shown below, the clear solution obtained after the separation by a 20 magnet, indicating the magnetic property of γ -Fe₂O₃@SiO₂@Au NPs.

Fig. S5 γ -Fe₂O₃@SiO₂@Au NPs solution (a) before and (b) after adsorption and separation by a magnet.

25

Fig. S6 Measured transmission spectra of γ -Fe₂O₃@SiO₂@Au ellipsoids in a magnetic field with different angles along their longitudinal direction.

Fig. S3 Electron diffraction patterns of γ -Fe₂O₃@SiO₂.

2 | Journal Name, [year], [vol], oo-oo