Supporting information

Photophysical and electroluminescent properties of bis(2',6'difluoro-2,3'-bipyridinato-N,C4')iridium(picolinate) complexes: effect of electron-withdrawing and electron-donating group substituent at the 4' position on the pyridyl moiety of the cyclometalated ligand

K. S. Bejoymohandas,^{a, b} Arunandan Kumar,^c S. Varughese,^a E. Varathan,^d V. Subramanian^d and M. L. P. Reddy^{*, a, b}

^aMaterials Science and Technology Division, CSIR-Network of Institutes for Solar Energy, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Thiruvananthapuram-695 019, India

^bAcademy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India

cLaboratoire Interdisciplinaire Carnot de Bourgogne (ICB) UMR 6303 CNRS, Université de

Bourgogne. 9, Av. Savary, BP 47870, 21078 Dijon Cedex, France.

^dChemical Laboratory, CSIR-Central Leather Research Institute, Chennai – 600 020, India

*Corresponding author: E-mail: <u>mlpreddy55@gmail.com</u>

Contents

- Fig. S1 ¹H-NMR spectrum of 2',6'-difluoro-4-(formyl)-2,3'-bipyridine (L1).
- Fig. S2 ¹³C-NMR spectrum of 2',6'-difluoro-4-(formyl)-2,3'-bipyridine (L1).
- Fig. S3 ¹⁹F-NMR spectrum of 2',6'-difluoro-4-(formyl)-2,3'-bipyridine (L1).
- Fig. S4 ESI-MS spectrum of 2',6'-difluoro-4-(formyl)-2,3'-bipyridine (L1).
- Fig. S5 ¹H-NMR spectrum of complex Ir1.
- Fig. S6 ¹⁹F-NMR spectrum of complex Ir1.
- Fig. S7 MALDI-TOF spectrum of complex Ir1.
- Fig. S8 ¹H-NMR spectrum of 2',6'-difluoro-4-(trifluoromethyl)-2,3'-bipyridine (L2).
- Fig. S9 ¹³C-NMR spectrum of 2',6'-difluoro-4-(trifluoromethyl)-2,3'-bipyridine (L2).
- Fig. S10 ¹⁹F-NMR spectrum of 2',6'-difluoro-4-(trifluoromethyl)-2,3'-bipyridine (L2).
- Fig. S11 ESI-MS spectrum of 2',6'-difluoro-4-(trifluoromethyl)-2,3'-bipyridine (L2).
- Fig. S12 ¹H-NMR spectrum of complex Ir2.
- Fig. S13 ¹⁹F-NMR spectrum of complex Ir2.
- Fig. S14 MALDI-TOF spectrum of complex Ir2.
- Fig. S15 ¹H-NMR spectrum of 2',6'-difluoro-4-cyano-2,3'-bipyridine (L3).
- Fig. S16. ¹³C-NMR spectrum of 2',6'-difluoro-4- cyano-2,3'-bipyridine (L3).
- Fig. S17¹⁹F-NMR spectrum of 2',6'-difluoro-4- cyano-2,3'-bipyridine (L3).
- Fig. S18 ESI-MS spectrum of 2',6'-difluoro-4- cyano-2,3'-bipyridine (L3).
- Fig. S19 ¹H-NMR spectrum of complex Ir3.
- Fig. S20 ¹⁹F-NMR spectrum of complex Ir3.

Fig. S21 MALDI-TOF spectrum of complex Ir3.

- Fig. S22 ¹H-NMR spectrum of 2',6'-difluoro-4-methoxy-2,3'-bipyridine (L4).
- Fig. S23 ¹³C-NMR spectrum of 2',6'-difluoro-4- methoxy-2,3'-bipyridine (L4).
- Fig. S24 ¹⁹F-NMR spectrum of 2',6'-difluoro-4- methoxy-2,3'-bipyridine (L4).
- Fig. S25 ESI-MS spectrum of 2',6'-difluoro-4- methoxy-2,3'-bipyridine (L4).
- Fig. S26 ¹H-NMR spectrum of complex Ir4.
- Fig. S27¹⁹F-NMR spectrum of complex Ir4.
- Fig. S28 MALDI-TOF spectrum of complex Ir4.
- Fig. S29 ¹H-NMR spectrum of 2-bromo-4-N,N-dimethylaminopyridine (L5a).
- Fig. S30 ¹³C-NMR spectrum of 2-bromo-4-N,N-dimethylaminopyridine (L5a).
- Fig. S31 ESI-MS spectrum of 2-bromo-4-N,N-dimethylaminopyridine (L5a).
- Fig. S32 ¹H-NMR spectrum of 2',6'-difluoro-4-(N,N-dimethylamine)-2,3'-bipyridine (L5).
- Fig. S33 ¹³C-NMR spectrum of 2',6'-difluoro-4-(N,N-dimethylamine)-2,3'-bipyridine (L5).
- Fig. S34 ¹⁹F-NMR spectrum of 2',6'-difluoro-4-(N,N-dimethylamine)-2,3'-bipyridine (L5).
- Fig. S35 ESI-MS spectrum of 2',6'-difluoro-4-(N,N-dimethylamine)-2,3'-bipyridine (L5).
- Fig. S36 ¹H-NMR spectrum of complex Ir5.
- Fig. S37 ¹⁹F-NMR spectrum of complex Ir5.
- Fig. S38 MALDI-TOF spectrum of complex Ir5.
- **Fig. S39** General structure of the complexes shows the label used for selected atoms as used in Table 2.
- Fig. S40 Thermogravimetric curves for complex Ir1 Ir5 under N₂ atmosphere.
- Fig. S41 Differential scanning calorimetric curves for complex Ir1-Ir5 under N₂ atmosphere.

Fig. S42Optimized geometrical structures of complex Ir1 Ir5.

Fig. S43 Comparison of reduction potentials (vs Ag/AgCl in CH₃CN) of Ir1 Ir5,

Fig. S44 Comparison of oxidation potentials (vs Ag/AgCl in CH₃CN) of **Ir1 Ir5**, (oxidation potential $FeCp_2/FeCp_2^+=0.45$ V, marked with asterisk).

Fig. S45 Lifetime decay profiles of complex Ir1 Ir5 in degassed dichloromethane solution ($c = 5 \times 10^{-5}$ M, $\lambda_{exc} = 375$ nm) at 298 K.

Fig. S46 Lifetime decay profiles of complex Ir1 Ir5 in 5 wt% doped PMMA film ($\lambda_{exc} = 375$ nm) at 298 K.

Table S1 Selected Bond Lengths for Complexes Ir2 and Ir4

Table S2 Selected Bond Angles for Complexes Ir2

Table S3 Selected Bond Angles for Complexes Ir4

Table S4 Intermolecular Hydrogen Bond Interactions for Ir2

Table S5 Intermolecular Hydrogen Bond Interactions for Ir4

Table S6 Selected Bond Distances, Bond Angles and Dihedral Angles from the Optimized Ground (S_0) and Triplet State (T_1) Geometry for the Complexes Ir1 Ir5 Together with the Experimental Values for Ir2 and Ir4

Table S7 Calculated energy levels of the HOMO, HOMO-1, HOMO-2, LUMO, LUMO+1, and LUMO+2 and Percentage of Contribution of Iridium metal (Ir), 2',6'-difluoro-2,3'-bipyridine Derivatives and Picolinate (pic) Ligands

 Table S8 Calculated Absorption of Ir1 Ir5 in CH₂Cl₂ Media at TD-B3LYP Level together with

 Experimental Values

Table S9 Calculated singlet-triplet splitting energy at the B3LYP/6-31G* level

Fig. S1 ¹H-NMR spectrum of 2',6'-difluoro-4-(formyl)-2,3'-bipyridine (L1).

Fig. S2 ¹³C-NMR spectrum of 2',6'-difluoro-4-(formyl)-2,3'-bipyridine (L1).

Fig. S3 ¹⁹F-NMR spectrum of 2',6'-difluoro-4-(formyl)-2,3'-bipyridine (L1).

Fig. S4 ESI-MS spectrum of 2',6'-difluoro-4-(formyl)-2,3'-bipyridine (L1) 221.05(M+1)⁺.

Fig. S5 ¹H-NMR spectrum of complex Ir1.

Fig. S6 ¹⁹F-NMR spectrum of complex Ir1.

Fig. S7 MALDI-TOF spectrum of complex Ir1 755.49(M+3)⁺.

Fig. S8 ¹H-NMR spectrum of 2',6'-difluoro-4-(trifluoromethyl)-2,3'-bipyridine (L2).

Fig. S9 ¹³C-NMR spectrum of 2',6'-difluoro-4-(trifluoromethyl)-2,3'-bipyridine (L2).

Fig. S10 ¹⁹F-NMR spectrum of 2',6'-difluoro-4-(trifluoromethyl)-2,3'-bipyridine (L2).

Fig. S11 ESI-MS spectrum of 2',6'-difluoro-4-(trifluoromethyl)-2,3'-bipyridine (L2) 261.04(M+1)⁺.

Fig. S12 ¹H-NMR spectrum of complex Ir2.

Fig. S13 ¹⁹F-NMR spectrum of complex Ir2.

Fig. S14 MALDI-TOF spectrum of complex Ir2, 832.99 (M+1)⁺.

Fig. S15 ¹H-NMR spectrum of 2',6'-difluoro-4-cyano-2,3'-bipyridine (L3).

Fig. S16¹³C-NMR spectrum of 2',6'-difluoro-4- cyano-2,3'-bipyridine (L3).

Fig. S17¹⁹F-NMR spectrum of 2',6'-difluoro-4- cyano-2,3'-bipyridine (L3).

Fig. S18 ESI-MS spectrum of 2',6'-difluoro-4- cyano-2,3'-bipyridine (L3). 218.05(M+1)⁺.

Fig. S19 ¹H-NMR spectrum of complex Ir3.

Fig. S20 ¹⁹F-NMR spectrum of complex Ir3.

Fig. S21 MALDI-TOF spectrum of complex Ir3. 746.90 (M)⁺.

Fig. S22 ¹H-NMR spectrum of 2',6'-difluoro-4-methoxy-2,3'-bipyridine (L4).

Fig. S23 ¹³C-NMR spectrum of 2',6'-difluoro-4- methoxy-2,3'-bipyridine (L4).

Fig. S24 ¹⁹F-NMR spectrum of 2',6'-difluoro-4- methoxy-2,3'-bipyridine (L4).

Fig. S25 ESI-MS spectrum of 2',6'-difluoro-4- methoxy-2,3'-bipyridine (L4). 223.06 (M+1)⁺.

Fig. S26 ¹H-NMR spectrum of complex Ir4.

Fig. S27 ¹⁹F-NMR spectrum of complex Ir4.

Fig. S28 MALDI-TOF spectrum of complex Ir4. 758.94 (M+1)⁺.

Fig. S29 ¹H-NMR spectrum of 2-bromo-4-N,N-dimethylaminopyridine (L5a).

Fig. S30 ¹³C-NMR spectrum of 2-bromo-4-N,N-dimethylaminopyridine (L5a).

Fig. S31 ESI-MS spectrum of 2-bromo-4-N,N-dimethylaminopyridine (L5a) 203.00 (M+2)⁺.

Fig. S32 ¹H-NMR spectrum of 2',6'-difluoro-4-(N,N-dimethylamine)-2,3'-bipyridine (L5).

Fig. S33 ¹³C-NMR spectrum of 2',6'-difluoro-4-(N,N-dimethylamine)-2,3'-bipyridine (L5).

Fig. S34 ¹⁹F-NMR spectrum of 2',6'-difluoro-4-(N,N-dimethylamine)-2,3'-bipyridine (L5).

Fig. S35 ESI-MS spectrum of 2',6'-difluoro-4-(N,N-dimethylamine)-2,3'-bipyridine (L5) 236.09 $(M+1)^+$.

Fig. S36 ¹H-NMR spectrum of complex Ir5.

Fig. S37 ¹⁹F-NMR spectrum of complex Ir5.

Fig. S38 MALDI-TOF spectrum of complex Ir5, 785.52 (M+1)⁺.

Fig. S39 General structure of the complexes shows the label used for selected atoms as used in Table 2.

Fig. S40 Thermogravimetric curves for complex Ir1 $\,$ Ir5 under $\rm N_2$ atmosphere.

Fig. S41 Differential scanning calorimetric curves for complex Ir1 Ir5 under N₂ atmosphere.

Fig. S42 Optimized geometrical structures of complex Ir1 Ir5.

Fig. S43 Comparison of oxidation potentials (vs Ag/AgCl in CH₃CN) of **Ir1 Ir5**, (oxidation potential FeCp₂/FeCp₂⁺ =0.45 V, marked with asterisk).

Fig. S44 Comparison of reduction potentials (vs Ag/AgCl in CH₃CN) of Ir1 Ir5,

Fig. S45 Lifetime decay profiles of complex Ir1 Ir5 in degassed dichloromethane solution ($c = 5 \times 10^{-5}$ M, $\lambda_{exc} = 375$ nm) at 298 K.

Fig. S46 Lifetime decay profiles of complex **Ir1 Ir5** in 5 wt% doped PMMA film ($\lambda_{exc} = 375$ nm) at 298 K.

Selected bond lengths for Ir2 (Å)							
Number	Atom1	Atom2	Length				
1	Ir1	N6	2.150(11)				
2	Ir1	N5	2.045(11)				
3	Ir1	N4	2.026(10)				
4	Ir1	C3A	1.966(16)				
5	Ir1	C2A	1.987(10)				
6	Ir1	01	2.115(11)				
Sel	ected bond le	engths for Ir4	(Å)				
1	Ir1	N1	2.048(2)				
2	Ir1	N14	2.050(2)				
3	Ir1	N27	2.125(2)				
4	Ir1	O33A	2.158(2)				
5	Ir1	C12	1.983(2)				
6	Ir1	C26	2.000(3)				

Table S1 Selected Bond Lengths for Complexes Ir2 and Ir4

Table S2 Selected Bond Angles for Ir2

	Selected bond angles for Ir2 (°)							
Number	Atom1	Atom2	Atom3	Angle				
1	N6	Ir1	N5	88.7(5)				
2	N6	Ir1	N4	96.0(5)				
3	N6	Ir1	C3A	172.5(5)				
4	N6	Ir1	C2A	99.0(5)				
5	N6	Ir1	O1	77.1(5)				
6	N5	Ir1	N4	175.2(5)				
7	N5	Ir1	C3A	96.1(5)				
8	N5	Ir1	C2A	81.8(5)				
9	N5	Ir1	O1	94.2(5)				
10	N4	Ir1	C3A	79.1(5)				
11	N4	Ir1	C2A	98.3(5)				
12	N4	Ir1	01	85.9(5)				
13	C3A	Ir1	C2A	87.4(6)				
14	C3A	Ir1	01	96.8(5)				
15	C2A	Ir1	O1	174.5(5)				

Selected bond angles for Ir4 (°)							
Number	Atom1	Atom2	Atom3	Angle			
1	C12	Ir1	C26	88.2(1)			
2	C12	Ir1	N1	80.8(1)			
3	C12	Ir1	N14	96.4(1)			
4	C12	Ir1	N27	94.50(9)			
5	C12	Ir1	O33A	169.19(9)			
6	C26	Ir1	N1	93.9(1)			
7	C26	Ir1	N14	80.3(1)			
8	C26	Ir1	N27	174.78(9)			
9	C26	Ir1	O33A	100.61(9)			
10	N1	Ir1	N14	173.78(9)			
11	N1	Ir1	N27	90.91(9)			
12	N1	Ir1	O33A	92.24(8)			
13	N14	Ir1	N27	94.89(9)			
14	N14	Ir1	O33A	91.25(8)			
15	N27	Ir1	O33A	77.24(8)			

Table S3 Selected Bond Angles for Ir4

2

D-H…A	d(D-H) [Å]	$d(H \cdot \cdot \cdot A) [Å]$	$d(D \cdot \cdot \cdot A) [Å]$	<(DHA) [°]
C(42)-H(42A)···O(49)iv	0.93	2.66	3.299(3)	127
C(3)-H(3A)····F(50)i	0.93	3.06	3.821(5)	140
C(4)-H(4A)····F(51) ii	0.93	3.06	3.953(2)	161
C(3)-H(3A)····N(16) i	0.93	2.43	3.168(1)	136
C(17)-H(17A)…N(18)iii	0.93	2.61	3.468(7)	153

Symmetry transformations used to generate equivalent atoms: i) x,x-y,1/2+z; ii) y,-x+y,-z; iii) y,x,1/2-z; iv)1-x+y,1-x,z

 Table S5 Intermolecular Hydrogen Bond Interactions for Ir4

D-Н···A	d(D-H) [Å]	d(H···A) [Å]	$d(D \cdot \cdot \cdot A) [Å]$	<(DHA) [°]
C(3)-H(3)····O(33A)i	0.95	2.81	3.597(3)	130
C(13)-H(13B)····O(17)ii	0.98	2.92	3.791(5)	138
C(90)-H(90B) …O(17)vi	0.99	2.83	3.869(4)	161
C(20)-H(20A)···O(33B)v	0.98	2.61	3.514(4)	141
C(28)-H(28)····O(4)iv	0.95	2.48	3.281(3)	130
C(13)-H(13C)…F(22)iii	0.98	2.45	3.259(4)	130
C(13)-H(13C)…F(10)iv	0.98	2.57	3.410(4)	134
C(20)-H(20B)…F(8)vi	0.98	2.77	3.575(4)	131
C(20)-H(20B)…N(9)vi	0.98	2.67	3.642(4)	150
C(90)-H(90A)…N(23)vii	0.99	2.37	3.447(5)	171

Symmetry transformations used to generate equivalent atoms: i)1-x,2-y,1-z,-1/2+z; ii)-1+x,3/2y,1/2+z; iii)-1+x,y,z; iv)1-x,1-y,1-z; v)1+x,y,z; vi)2-x,1-y,1-z; vii)2-x,-1/2+y,3/2-z

Ir1		r1	I	r2	I	r3	I	r4	Ι	Ir5		кр
	S ₀	T ₁	S ₀	T ₁	S ₀	T ₁	S ₀	T ₁	S ₀	T ₁	Ir2	Ir4
Bond length (Å)												
Ir-N1	2.207	2.207	2.208	2.209	2.207	2.209	2.204	2.215	2.204	2.222	2.150	2.125
Ir-N2	2.073	2.010	2.062	2.086	2.073	2.001	2.081	2.023	2.067	2.099	2.046	2.050
Ir-N3	2.060	2.093	2.075	2.021	2.060	2.098	2.067	2.087	2.081	1.992	2.025	2.048
Ir-C1	2.006	2.011	2.006	2.002	2.006	2.011	2.003	2.005	2.005	2.016	1.965	1.983
Ir-C2	2.007	2.004	2.005	2.008	2.007	2.009	2.005	2.004	2.001	2.007	1.987	2.000
Ir-O1	2.167	2.148	2.165	2.158	2.163	2.143	2.173	2.167	2.177	2.162	2.115	2.157
Bond length(deg) N3-Ir-N2 N3-Ir-N1 N3-Ir-O1 N3-Ir-C2 N3-Ir-C1	175.3 89.0 92.7 95.2 80.6	175.2 88.3 92.1 95.0 80.2	175.5 95.7 88.8 98.0 80.3	175.6 95.5 90.4 96.9 81.6	175.5 88.9 92.7 95.3 80.6	175.2 88.3 91.5 94.9 80.0	175.2 88.8 93.3 95.3 80.5	175.4 88.4 92.5 94.5 80.2	175.2 96.1 88.7 97.8 80.1	175.0 96.0 92.6 97.0 81.8	175.1 96.0 85.9 98.3 79.1	173.7 90.9 92.2 94.0 80.8
Dihedral Angle (deg) N2-C2-Ir-N1 O1-N1-Ir-C1	-64.0 173.4	-71.8 172.4	87.4 23.1	86.8 18.2	-64.3 173.4	-73.4 171.6	-65.0 173.9	-73.4 172.9	87.2 22.7	86.5 16.0	87.4 35.2	-63.9 170.0

Table S6 Selected Bond Distances, Bond Angles and Dihedral Angles from the Optimized Ground (S_0) and Triplet State (T_1) Geometry for the Complexes Ir1-Ir5 Together with the Experimental Values for Ir2 and Ir4

Complex	x	E (eV)	Ir	Substituted pyridy	yl Difluoropyridyl	pic
				moiety	moiety	
Ir1	LUMO+3	-1.969	1.71	57.94	30.83	13.16
	LUMO+2	-2.224	2.97	3.67	6.79	92.60
	LUMO+1	-2.974	4.7	88.90	10.11	1.01
	LUMO	-3.038	4.89	88.42	9.77	1
						52
	HOMO	-6.422	51.20	7.77	29.44	11.59
	HOMO-1	-6.591	45.11	10.32	62.81	26.71
	HOMO-2	-6.823	6.54	16.57	53.50	30.18
Ir2	LUMO+3	-1.91	1.9	57.81	12.81	27.9
	LUMO+2	-2.25	3.3	4.14	2.45	92.2
	LUMO+1	-2.45	5.4	75.08	15.09	1.9
	LUMO	-2.53	5.3	75.08	41.70	2.9
	HOMO	-6.45	52.1	10.21	27.08	11.1
	HOMO-1	-6.63	47.1	13.82	13.96	25.2
	HOMO-2	-6.89	7.7	26.38	41.70	24.8
Ir3	LUMO+3	-2.174	1.55	64.81	21.81	11.83
	LUMO+2	-2.368	3.03	4.89	0.83	91.24
	LUMO+1	-2.942	5.32	84.19	9.22	1.27
	LUMO	-3.015	5.53	82.61	9.82	2.04
	HOMO	-6.645	51.75	6.79	28.31	13.14
	HOMO-1	-6.782	45.37	9.68	14.77	30.18
	HOMO-2	-7.019	1.53	4.62	15.43	78.42
Ir4	LUMO+3	-1.420	1.95	18.49	2.90	76.66
	LUMO+2	-1.506	5.11	65.34	26.99	2.56
	LUMO+1	-1.661	3.48	58.70	31.15	6.67
	LUMO	-1.875	3.47	5.41	1.70	89.42
	HOMO	-5.978	52.56	8.11	26.59	12.74
	HOMO-1	-6.040	50.11	14.73	13.60	21.55
	HOMO-2	-6.383	49.95	21.18	11.25	17.63
Ir5	LUMO+3	-1.05	2.6	14.60	2.37	80.4
	LUMO+2	-1.18	3.7	63.56	30.00	1.6
	LUMO+1	-1.32	3.5	55.83	27.81	6.6
	LUMO	-1.55	2.8	3.34	0.87	93.0
	HOMO	-5.62	45.0	30.43	9.86	14.6
	HOMO-1	-5.66	53.4	10.28	24.79	11.4
	HOMO-2	-5.86	40.8	52.16	3.85	3.0

Table S7 Calculated Energy Levels of the HOMO, HOMO-1, HOMO-2, LUMO, LUMO+1, and LUMO+2 and Percentage of Contribution of Iridium metal (Ir), 2',6'-difluoro-2,3'-bipyridine Derivatives and Picolinate (pic) Ligands

	State	$\lambda(nm)/E(eV)$	Oscillator	Main configuration	Assign	λ_{exp} (nm)
Ir1	S ₁	434/2.86	0.0111	H→L (90%)	CHOdfbpy/ Ir \rightarrow CHOdfbpy (ILCT/ MLCT/LLCT)	
	S_4	385/3.22	0.1709	H-1→L+1(84%)	CHOdfbpy/ Ir \rightarrow CHOdfbpy (ILCT/ MLCT)	387
	S_9	357/3.47	0.0796	H-3→L+1(58%)	CHOdfbpy / Ir/ pic \rightarrow CHOdfbpy (MLCT/ LLCT)	
	S_{11}	341/3.63	0.1191	H-4→L (82%)	CHOdfbpy/ Ir \rightarrow CHOdfbpy (MLCT/ LLCT)	334
	S_{16}	318/3.90	0.1416	H→L+3(90%)	CHOdfbpy/ Ir \rightarrow CHOdfbpy (ILCT/ MLCT/ LLCT)	
	S_{22}	292/4.24	0.0560	H-2→L+2 (62%)	CHOdfbpy \rightarrow pic (LLCT)	
	S_{27}	280/4.42	0.0572	H-2→L+3(45%)	$CHOdfbpy \rightarrow CHOdfbpy (LLCT)$	
	S ₃₀	278/4.45	0.0203	H-4→L+2(62%)	CHOdfbpy/ Ir \rightarrow pic (MLCT/ LLCT)	274
Ir2	\mathbf{S}_1	372/ 3.32	0.0016	H→L (95%)	$CF_3dfbpy/Ir/pic \rightarrow CF_3dfbpy/Ir(ILCT/MLCT)$	377
	S_4	343/ 3.61	0.1132	H-1→L+1(71%)	Ir /CF ₃ dfbpy / pic \rightarrow CF ₃ dfbpy (ILCT/ MLCT/ LLCT)	
	S_7	319/3.88	0.0771	H-2→L+1(36%)	$CF_3dfbpy / Ir / pic \rightarrow CF_3dfbpy / Ir (ILCT / MLCT / LLCT)$	
	S_{12}	303/4.09	0.1714	H-4→L (42%)	Ir/ pic \rightarrow CF ₃ dfbpy (MLCT/ LLCT)	
	S_{20}	282/4.39	0.1353	H-1→L+4(74%)	Ir/ CF ₃ dfbpy / pic \rightarrow CF ₃ dfbpy (ILCT/ MLCT/ LLCT)	
	S_{28}	261/4.73	0.0538	H-6→L (46%)	Ir/ CF ₃ dfbpy / pic \rightarrow CF ₃ dfbpy (ILCT/ MLCT/ LLCT)	255
	S ₃₀	259/4.79	0.0414	H-6→L+1(71%)	Ir/ CF ₃ dfbpy / pic \rightarrow CF ₃ dfbpy/ Ir (ILCT/ MLCT/ LLCT)	
Ir3	\mathbf{S}_1	415/2.98	0.0191	H→L (93%)	Ir/ CNdfbpy \rightarrow CNdfbpy (MLCT/ ILCT/ LLCT)	
	S_3	388/3.19	0.0008	H-1→L (81%)	Ir/ CNdfbpy \rightarrow CNdfbpy (MLCT/ LLCT)	391
	S_4	370/3.35	0.1723	H-1→L+1(78%)	Ir/ CNdfbpy \rightarrow CNdfbpy (ILCT/ MLCT)	
	S_7	337/3.67	0.0850	H-3→L (60%)	Ir/ CNdfbpy \rightarrow CNdfbpy (MLCT/ LLCT)	
	S_{10}	327/3.79	0.1204	H-4→L(69%)	Ir/ CNdfbpy \rightarrow CNdfbpy (LLCT/ MLCT)	321
	S_{14}	314/3.94	0.1212	H→L+3(71%)	Ir/ CNdfbpy \rightarrow pic (LLCT/ ILCT/MLCT)	
	S_{19}	292/4.25	0.0777	H-1→L+4(83%)	Ir/ CNdfbpy \rightarrow CNdfbpy (ILCT/ MLCT)	
	S ₂₈	272/4.55	0.0647	H-2→L+4 (46%)	$CNdfbpy / pic \rightarrow CNdfbpy (ILCT / LLCT)$	
	S ₃₀	269/4.60	0.0108	H-3→L+3 (72%)	Ir/ CNdfbpy \rightarrow pic (MLCT/ LLCT)	260

Table S8 Calculated Absorption of Ir1-Ir5 in CH₂Cl₂ Media at TD-B3LYP Level together with Experimental Values

	State	$\lambda(nm)/E(eV)$	Oscillator	Main configuration	Assign	λexp (nm)
Ir4	S_1	349/3.55	0.0047	H→L (97%)	Ir/OMedfbpy→pic (MLCT/LLCT)	355
	S_4	331/3.75	0.0757	H-1→L+1(82%)	Ir/OMedfbpy \rightarrow OMedf bpy (MLCT/LLCT/ILCT)	
	S_7	317/3.91	0.0823	H-2→L(56%)	Ir/OMedfbpy /pic \rightarrow pic (LLCT/MLCT/ILCT)	
	S ₂₄	265/4.67	0.2847	H-1→L+5 (34%)	Ir/OMedfbpy \rightarrow OMedfbpy (MLCT/LLCT/ILCT)	
	S_{27}	259/4.78	0.0925	H-2→L +5 (39%)	Ir/OMedfbpy /pic \rightarrow OMedfbpy (MLCT/LLCT)	
	S ₂₉	256/4.83	0.1589	H-2→L+5(33%)	Ir/OMedfbpy /pic \rightarrow OMedfbpy (MLCT/LLCT)	
	S ₃₀	254/4.88	0.0073	H-3→L+3(58%)	Ir/ pic \rightarrow pic (ILCT/ MLCT)	254
Ir5	S_1	365/3.39	0.0122	H→L (92%)	Ir/ $NMe_2dfbpy/pic \rightarrow pic$ (MLCT/ LLCT)	
	S_3	351/3.53	0.0385	H-1→L (94%)	Ir/ NMe ₂ dfbpy/ pic \rightarrow pic (MLCT/ LLCT)	345
	\mathbf{S}_{6}	332/3.73	0.1390	H→L+2(81%)	Ir/ NMe ₂ dfbpy/ pic \rightarrow NMe ₂ dfbpy/ pic (MLCT/ LLCT/ILCT)	
	S_{12}	302/4.10	0.0351	H-1→L+3(59%)	Ir/ NMe ₂ dfbpy/ pic \rightarrow NMe2dfbpy/ pic (MLCT/ LLCT/ILCT)	
	S_{21}	277/4.46	0.0953	H-1→L+4(33%)	Ir/ NMe ₂ dfbpy/ pic \rightarrow NMe ₂ dfbpy/ pic (ILCT/ MLCT/ LLCT)	
	S_{26}	269/4.59	0.1854	H→L+5(21%)	Ir/ NMe ₂ dfbpy/ pic \rightarrow NMe ₂ dfbpy (MLCT/ ILCT/ LLCT)	
	S ₂₉	265/4.67	0.3187	H-1→L+5(24%)	Ir/ NMe ₂ dfbpy/ pic \rightarrow NMe ₂ dfbpy (MLCT/ ILCT/ LLCT)	265
	S ₃₀	263/ 4.70	0.0788	H→L+6(22%)	Ir/ NMe ₂ dfbpy/ pic \rightarrow NMe ₂ dfbpy/ Ir (MLCT/ ILCT/ LLCT)	

Table S9 Calculated singlet-triplet splitting energy at the B3LYP/6-31G* level.

Complexes	S_1	T ₁	ΔE_{S1-T1}
Ir1	2.561	2.054	0.507
Ir2	2.914	2.232	0.682
Ir3	2.706	2.112	0.594
Ir4	3.103	2.339	0.764
Ir5	3.050	2.329	0.721