Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Copper(I)-Iodide Based Coordination Polymers: Bifunctional Properties Related to Thermochromism and PMMA-Doped Polymer Film Materials

Yang Song^a, Ruiqing Fan^{a*}, Ping Wang^a, Xinming Wang^a, Song Gao^a, Xi Du^a, Yulin Yang^{a*} and Tianzhu Luan^b

^a Department of Chemistry, Harbin Institute of Technology, Harbin 150001, P. R. of China ^bThe First Affiliated Hospital of Harbin Medical University, Harbin 150001, P. R. of China

Fig.S1 The IR spectra of pure PMMA, coordination polymers 1, 2 and 1-PMMA, 2-PMMA.

Fig.S2 (a) The structural unit of **1** with labeling scheme and 50% thermal ellipsoids (hydrogen atoms are omitted for clarity). (b) The 1D chain structure in the coordination polymer **1**.

Fig.S3 The coplanarity of ligand bib and the twist of ligand bix.

Fig.S4 The independent two-fold non-interpenetrating frameworks with sql network in 2.

Fig.S5 The ¹H NMR spectra of 1 and 2.

Fig.S6 The PXRD patterns of coordination polymers 1 and 2 with the relevant simulated patterns, and 1 and 2 samples soaked in water for 24 h.

Fig.S7 UV absorption spectra of bib, bix and coordination polymers 1 and 2.

Fig.S8 Normalized emission spectra of ligands bib and bix in DMSO, CH₃CN and CH₃OH solutions (concentration: (M) $\approx 10^{-5}$ M) at 298 K and the corresponding color coordinate diagram of emission.

Table S1 The summary of the luminescent properties of Cu_4I_4 -based luminescent materials.

No.	Cite	Complex	Excitat	ion and emission	Lu	minescent character
1	<i>Chem. Mater.</i> 2008, 20 , 7010–7016	$ [Cu_4I_4(PPh_2(CH_2)_2Si(OCH_2CH_3)_3)_4] (C1) \\ [Cu_4I_4-(PPh_2(CH_2)_2CH_3)_4] (C2) $	295 K 87 K	$\lambda_{ex} = 300 \text{ nm}$ $\lambda_{em} = 585 \text{ nm}(C1)$ $\lambda_{em} = 553 \text{ nm}(C2)$ $\lambda_{ex} = 300 \text{ nm}$	a)	Bright yellow luminescence at room temperature and blue (C1) and purple (C2) luminescence at 77 K.
				$\lambda_{em} = 312 \text{ nm} (C1)$ $\lambda_{em} = 425 \text{ and } 572 \text{ nm} (C2)$	b) c)	Dual emission. Large blue-shifts of 273 and 128 nm for C1 and C2.
2	Angew. Chem. Int. Ed. 2008, 47 , 685–688	$[Cu_4I_4L_2]_n$ [L = 2-(cyclohexylthio)-1- thiomor pholinoethanone]	298 K 77 K	$\lambda_{ex} = 350 \text{ nm}$ $\lambda_{em} = 538 \text{ nm}$ $\lambda_{ex} = 350 \text{ nm}$ $\lambda_{em} = 599 \text{ nm}$	a) b)	Orange luminescence at room temperature and red luminescence at 77 K. Large red-shifts of 61 nm.
3	J. Am. Chem. Soc. 2010, 132, 10967–10969	$[Cu_4I_4(PPh_2(CH_2CH=CH_2))_4]$	275 K 8 K	$\lambda_{ex} = 360 \text{ nm}$ $\lambda_{em} = 530 \text{ nm}$ $\lambda_{ex} = 360 \text{ nm}$ $\lambda_{em} = 440 \text{ nm}$	a) b)	Pale green luminescence at 295 K and blue luminescence at 77 K. Large blue-shift of 90 nm.
4	Chem. Eur. J., 2010, 16 , 1553-1559	[Cu ₄ I ₄ -(DABCO) ₂](DABCO=1,4-diazabicyclo [2.2.2]octane) with two different crystalline forms, I and II.	295 K 77 K	$λ_{ex} = 349 \text{ nm}$ $λ_{em} = 580 \text{ nm (I)}$ $λ_{em} = 556 \text{ nm (II)}$ $λ_{ex} = 339 \text{ nm}$ $λ_{em} = 590 \text{ nm (I)}$ $λ_{em} = 578 \text{ nm (II)}$	a) b)	Emission colour from yellow at 295 K to deep orange at 77 K. Red-shifts of 10 and 22 nm for I and II.

5	Chem. Commun., 2011, 47,	$[Cu_4I_4(NH_3)Cu_3L_3]_n$	293 K	$\lambda_{\rm ex} = 365 \ \rm nm$	a)	The luminescence changes
	12441–12443	[L=3-(4-pyridyl)-5-(<i>p</i> -tolyl) pyrazolate]		$\lambda_{em} = 530$ and 700 nm		correspondingly from yellow to
			77 K	$\lambda_{\rm ex} = 365 \ \rm nm$		brighter green from 293 K to 77 K.
				$\lambda_{\rm em} = 530 \rm nm$	b)	Dual emission
6	Cham Commun 2012 10	$[C_{11} \text{ L} (dmimpr)]$ [dmimpr = 1.2 di(2 moth v]	208 V	2 - 260 nm	a)]	Dright vallow luminoscopes at room
0	6152 6154	$[Cu414(animpi)_{2}]_n [animpi - 1,5-ai(2-metri yi-$	290 K	$\lambda_{\rm ex} = 500 \rm mm$	a) 1	temperature and erange red
	0152-0154	initiazoi-i-yi)- propanej	220 K	$\lambda_{\rm em} = 360 \rm nm$		luminescence at 77 K
			220 K	$\lambda_{\rm ex} = 565 \rm nm$	h)	Large red_shifts of 41 nm
			183 K	$\lambda_{\rm em} = 360 \rm nm$	0)	Large red-sints of 41 mil.
			105 K	$\lambda_{\rm ex} = 572 \rm nm$		
			77 K	$\lambda_{em} = 360 \text{ nm}$		
			,,,,,	$\lambda_{\rm em} = 596 \ \rm nm$		
7	Chem. Sci., 2013, 4, 1484-	$[(Cu_{4}^{I}I_{4})_{3}(Cu_{6}^{I})_{2}(3-ptt)_{12}]_{n} \cdot 24nDEF \cdot 12nH_{2}O$	RT	$\lambda_{ex} = 275$ and 370 nm	a)	Emission with both
	1489			$\lambda_{em} = 780$ and 795 nm		thermochromic and NIR
			77 K	$\lambda_{ex} = 323$ and 365 nm		luminescence
				$\lambda_{em} = 590, 834/590, 834 \text{ nm}$	b)	Dual emission
			10 K	$\lambda_{ex} = 323$ and 365 nm	c)	Large red-shift of about 50 nm.
				$\lambda_{em} = 594, 841/592, 853 \text{ nm}$		
0	Cham Eur I 2012 10	Cyl (DDb (C II)CII OII)]	200 V	2 - 200 nm	2)	Craan amiggion at the room
0	Chem. Eur. J. 2015, 19,	$[Cu_{414}(PPII_{2}(C_{6}\Pi_{4})C\Pi_{2}O\Pi)_{4}]$	290 K	$\lambda_{\rm ex} = 500$ IIII	a)	temperature becomes blue
	13031 - 13033		8 K	$\lambda_{\rm em} = 333 \mathrm{mm}$		emission in liquid nitrogen
			υĸ	$\lambda_{\rm ex} = 300 \rm{mm}$	h)	Large blue-shift of 110 nm
				$n_{\rm em} = +2.5$ IIIII	0)	Large one-smit of 110 mil.

9	Cryst. Growth Des. 2014,	$[{Cu_4(\mu_3-I)_4}(\mu-L_8)_2]_n [L8=bis(5-tert-butyl-2-$	298 K	$\lambda_{\rm ex} = 341 \text{ nm}$	a)	Bright yellow luminescence at
	14, 5373–5387	methylphenylthio)-Methane]		$\lambda_{\rm em} = 587 \ \rm nm$		room temperature and red
			77 K	$\lambda_{\rm ex} = 334 \ \rm nm$		luminescence at 77 K.
				$\lambda_{em} = 417$ and 638 nm	b)	Large shift of 51 nm.
					c)	Dual emission.
10	<i>CrystEngComm</i> , 2014 , 16 , 1927–1933	[Cu ₄ I ₄ (bpmp) ₂] _n (1) [bpmp=1,4-bis(pyridin-4-ylmethyl)piperazine]	298 K 77 K	$\lambda_{ex} = 365 \text{ nm}$ $\lambda_{em} = 585 \text{ nm}$ $\lambda_{ex} = 365 \text{ nm}$	a)	Bright yellow luminescence at room temperature and orange-red luminescence at 77 K.
				$\lambda_{\rm em} = 615 \ \rm nm$	b)	A red shift of 30 nm
11	<i>Chem. Eur. J.</i> 2015, 21 , 1439 – 1443	$ \begin{array}{l} [Cu_{4}I_{4}L_{2}(MeCN)_{2}]_{n} \ (1) \\ [Cu_{4}I_{4}L_{2}]_{n} \ (2) \\ \{ [Cu_{4}I_{4}L_{2}]\cdot MeOH \}_{n} \ (3) \\ [L=2-(tert-butylthio)-N-(pyridin-3-yl)- \end{array} $	298 K	$\lambda_{ex} = 350 \text{ nm}$ $\lambda_{em} = 460 \text{ nm} (1)$ $\lambda_{em} = 590 \text{ nm} (2)$ $\lambda_{em} = 530 \text{ nm} (3)$	a)	Blue, orange and yellow emission at room temperature for 1, 2 and 3, respectively, and orange emission at 303 K.
		Acetamide]	303 K	$\lambda_{ex} = 350 \text{ nm}$ $\lambda_{em} = 590 \text{ nm} (1)$ $\lambda_{em} = 590 \text{ nm} (2)$ $\lambda_{em} = 595 \text{ nm} (3)$	b)	Large red-shfits of 130 and 65 nm for 1 and 3.

1			
I(1)-Cu(1)	2.515(1)	N(3)-Cu(2)-I(2)	107.8(1)
I(1)-Cu(2)	2.690(8)	N(3)-Cu(2)-I(1)	100.2(1)
I(2)-Cu(1)	2.706(2)	I(2)-Cu(2)-I(1)	108.2(0)
I(2)-Cu(2)	2.667(2)	N(3)-Cu(2)-I(3)	129.6(1)
I(2)-Cu(3)	2.782(1)	I(2)-Cu(2)-I(3)	108.7(3)
I(3)-Cu(2)	2.723(4)	I(1)-Cu(2)-I(3)	100.2(0)
I(3)-Cu(3)	2.638(1)	N(5)-Cu(3)-I(3)#2	107.6(1)
I(3)-Cu(3)#2	2.637(0)	N(5)-Cu(3)-I(3)	113.3(1)
Cu(2)-N(3)	2.001(4)	I(3)#2-Cu(3)-I(3)	116.2(3)
Cu(3)-N(5)	2.004(4)	N(5)-Cu(3)-I(2)	97.4(1)
Cu(3)-I(3)#2	2.637(2)	I(3)#2-Cu(3)-I(2)	113.2(3)
Cu(3)-Cu(3)#2	2.788(2)	I(3)-Cu(3)-I(2)	107.8(3)
Cu(1)-N(1)	1.959(4)	N(5)-Cu(3)-Cu(3)#2	131.3(1)
		N(1)-Cu(1)-I(1)	138.3(1)
		N(1)-Cu(1)-I(2)	107.7(1)
		I(1)-Cu(1)-I(2)	112.9(3)
2			
Cu(1)-N(1)	2.003(4)	N(1)-Cu(1)-I(3)	106.5(1)
Cu(1)-I(3)	2.644(1)	N(1)-Cu(1)-I(1)	106.3(1)
Cu(1)-Cu(4)	2.654(3)	N(1)-Cu(1)-I(2)	100.7(1)
Cu(1)-I(1)	2.684(2)	I(3)-Cu(1)-I(2)	113.0(3)
Cu(1)-Cu(3)	2.690(1)	I(1)-Cu(1)-I(2)	111.4(3)
Cu(1)-Cu(2)	2.702(1)	N(4)#1-Cu(2)-I(2)	108.2(1)
Cu(1)-I(2)	2.739(1)	N(4)#1-Cu(2)-I(4)	106.9(1)
Cu(2)-N(4)#1	2.006(4)	I(2)-Cu(2)-I(4)	116.5(3)
Cu(2)-Cu(4)	2.650(1)	N(4)#1-Cu(2)-I(3)	101.4(1)
Cu(2)-Cu(3)	2.656(1)	I(2)-Cu(2)-I(3)	110.7(3)
Cu(2)-I(2)	2.672(1)	I(4)-Cu(2)-I(3)	111.9(3)
Cu(2)-I(4)	2.702(0)	N(5)-Cu(3)-I(1)	110.5(1)
Cu(2)-I(3)	2.785(2)	N(5)-Cu(3)-I(2)	102.4(1)
Cu(3)-N(5)	2.005(4)	I(1)-Cu(3)-I(2)	112.4(3)
Cu(3)-I(1)	2.671(0)	N(5)-Cu(3)-I(4)	103.3(1)
Cu(3)-Cu(4)	2.719(1)	I(1)-Cu(3)-I(4)	113.9(3)
Cu(3)-I(2)	2.721(1)	I(2)-Cu(3)-I(4)	113.4(3)
Cu(3)-I(4)	2.747(1)	N(8)#2-Cu(4)-I(4)	108.7(1)
Cu(4)-N(8)#2	2.007(4)	I(3)-Cu(4)-I(4)	117.0(3)
Cu(4)-I(3)	2.665(1)	N(8)#2-Cu(4)-I(1)	99.1(1)
Cu(4)-I(4)	2.666(1)	I(3)-Cu(4)-I(1)	111.3(3)
Cu(4)-I(1)	2.843(0)	I(4)-Cu(4)-I(1)	111.0(3)

Table S2 Selected bond lengths (Å) and bond angles (°) for coordination polymers 1 and 2.

Symmetry transformations used to generate equivalent atoms: #1: -x, -y+2, -z; #2: -x, -y+1, -z+1.