
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2015

New Highly efficient electrochemical synthesis of dispersed Ag₂O particles in the vicinity of the cathode with controllable size and shape

Quoc-Thai Pham, a,b Bui The Huy, a Yong-Ill Lee *,a

^aAnastro Laboratory, Department of Chemistry, Changwon National University, Changwon 641-773, Korea.

^bFaculty of Chemical Engineering, Industrial University of Hochiminh City, Viet Nam.

Fig. S1 XRD pattern of the deposited Ag powder. All the diffraction peaks of the deposited Ag sample were assigned to a FCC Aglattice (JCPDS 893722).

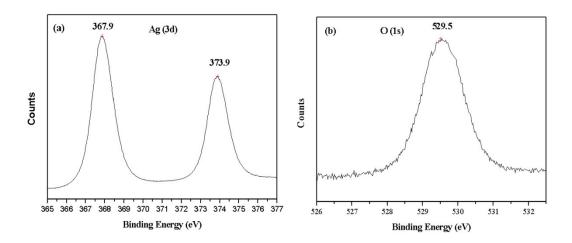
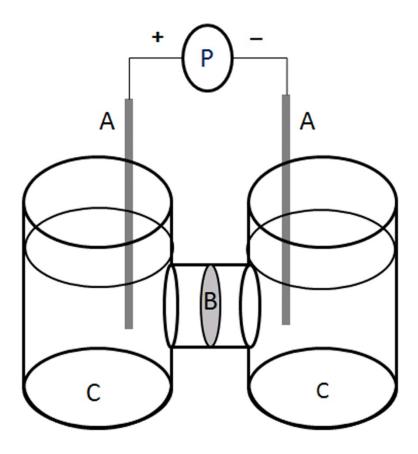



Fig. S2 XPS spectra of (a) Ag (3d), and (b) O (1s) for Ag₂O hexapods.

Fig. S3 Schematic view of apparatus for electrochemical synthesis of dispersed silver oxide particles. A is the silver electrode, B glass filter (G4), C glass chamber and P direct current power supply (Agilent, E3641, 35 V, 0.8 A). Total volume of aqueous solution in the chamber containing AgNO₃ and Na₂SO₄ is 30 mL.