Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Rewritable Magnetic Fluorescent-Encoded Microspheres:

Preparation, Characterization, and Recycling

Yan Li,^a Youshen Wu,^a Cheng Luo,^b Bo Wang^c and Daocheng Wu*^a

Fig.S1 LSCM images of magnetic fluorescent MS-MF microspheres with different Rh 110 doping concentrations.

Fig.S2 LSCM images of different sized polystyrene microspheres coated with fluorescent MF shell, a: Rh 110 doped, b: Rh 110/SRh 101 co-doped, c: SRh 101 doped. The polystyrene microspheres in a and b were of smooth surfaces whereas the microspheres in c were of mesoporous surface structure. After fluorescent MF shell coating, the structure differences could be easilly distinguished through the fluorescence distribution.

Fig.S3 FTIR spectra of MS-MF microspheres with different writing-erasing cycles.

Fig.S4 Fluorescence emission spectra of SRh 101 doped magnetic fluorescent microspheres with different writing-erasing cycles. (a) MS0-MF, (b) MS1-MF, (c) MS2-MF, (d) MS3-MF. Each sample was independently prepared and recorded for four times.

Fig.S5 Fluorescence emission spectra of Rh 110-SRh 101 dual-doped magnetic fluorescent microspheres with different writing-erasing cycles. (a) MS0-MF, (b) MS1-MF, (c) MS2-MF, (d) MS3-MF. Each sample was independently prepared and recorded for four times.

Fig.S6 Magnetic hysteresis loops of magnetic fluorescent MS-MF microspheres with different writing-erasing cycles. (a) MS0-MF, (b) MS1-MF, (c) MS2-MF, (d) MS3-MF.

Fig.S7 The photographs of recycled magnetic MS microspheres and MS microspheres modified with polydopamine coating (MS-PDA).