Electronic Supplementary Information (ESI)

On the Selection of a Host Compound for Efficient Host-Guest Light-Emitting Electrochemical Cells

Shi Tang,^{*a,b*} Herwig A. Buchholz ^{*c*} and Ludvig Edman ^{*a,b**}

^a The Organic Photonics and Electronics Group, Umeå University, SE-901 87 Umeå, Sweden

^b LunaLEC AB, Tvistevägen 47, SE-907 19 Umeå, Sweden

^c Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany.

Figure S1. (5 μ m × 5 μ m) micrographs of the smooth surface morphology of the {Host:Ir(Rpiq)₃:TMPE-OH:LiCF₃SO₃} active layers, as recorded with an AFM operating in tapping mode.

Figure S2. The photoluminescence spectrum of the three {Host: $Ir(R-piq)_3$ } blend films, with the host being PSTB (upper green trace), CBP (middle blue trace), and PVK (lower red trace). The spectra were measured in a well-controlled setup, using identical settings for all films.

Figure S3. Long-term measurement of sandwich-cell LECs with the following configuration: ITO/PEDOT-PSS/Host: $Ir(R-piq)_3$:TMPE-OH:LiCF₃SO₃/Al, with the respective host being identified in the inset. The devices were driven at $j = 77 \text{ mA/cm}^2$ for PVK and CBP, and $j = 5.8 \text{ mA/cm}^2$ for PSTB. The table summarizes the lifetimes to half maximum luminance.

Figure S4. (a) The temporal response of a ITO/PEDOT-PSS/PSTB: $Ir(R-piq)_3$:TMPE-OH:LiCF₃SO₃/Al sandwich cell driven at $j = 5.8 \text{ mA/cm}^2$. (b) The temporal response of a ITO/PEDOT-PSS/PVK: $Ir(ppy)_3$:TMPE-OH:LiCF₃SO₃/Al sandwich cell driven at $j = 77 \text{ mA/cm}^2$.

Figure S5. The energy structure of the host materials CBP and PSTB, and the electrolyte TMPE-OH.