Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Relationship between interlayer anions and photoluminescence of layered rare earth hydroxides

Hyunsub Kim, Byung-Il Lee, Heejin Jeong, and Song-Ho Byeon

Department of Applied Chemistry, College of Applied Science and Institute of Natural Sciences, Kyung Hee University, Gyeonggi, 446-701, Korea

E-mail: shbyun@khu.ac.kr

J. Mater. Chem. C

Fig. S1 Powder X-ray diffraction patterns of $Gd_{1.80}RE_{0.20}(OH)_5X \cdot nH_2O$ (LGdH:RE) where RE = (a) Eu, (b) Tb, and (c) Ce and X = NO₃⁻, F⁻, Cl⁻, I⁻, OH⁻, ClO₃⁻, S²⁻, CO₃²⁻, and SO₄²⁻. Dotted lines indicate the Bragg angle of (002) and (004) diffractions of corresponding X = NO₃⁻ members.

Fig. S2 Powder X-ray diffraction patterns of $Gd_{1.80}RE_{0.20}(OH)_5X \cdot nH_2O$ (LGdH:RE) where RE = (a) Eu, (b) Tb, and (c) Ce and X = NO₃⁻, terephthalate, 2-naphthoate, and dodecylsulfate.

Fig. S3 FT-IR spectra of $Gd_{1.80}Eu_{0.20}(OH)_5NO_3 \cdot nH_2O$ (LGdH:Eu) and its products obtained after exchange reaction between NO₃⁻ and (a) F⁻, Cl⁻, I⁻, OH⁻, ClO₃⁻, S²⁻, CO₃²⁻, and SO₄²⁻, and (b) terephthalate, 2-naphthoate, and dodecylsulfate. The disappearance or significant weakening of the band at ~1385 cm⁻¹, which is characteristic of NO₃⁻, confirmed the essentially complete exchange reaction.

Fig. S4 UV-VIS absorption spectra of aqueous suspensions containing LGdH hosts (*i.e.* without any activator ion) with (a) NO₃⁻, F⁻, Cl⁻, I⁻, OH⁻, ClO₃⁻, S^{2⁻}, CO₃^{2⁻}, and SO₄^{2⁻} anions and (b) dodecylsulfate (DS), terephthalate, and 2-naphthoate anions in the interlayer space.

Fig. S5 XRD patterns measured as a function of reaction time during the exchange reaction of $Gd_{1.80}Ce_{0.20}(OH)_5NO_3 \cdot nH_2O$ with Cl^- (a) and inversely $Gd_{1.80}Ce_{0.20}(OH)_5Cl \cdot nH_2O$ with NO_3^- (b). The transformation from $Gd_{1.80}Ce_{0.20}(OH)_5NO_3 \cdot nH_2O$ to $Gd_{1.80}Ce_{0.20}(OH)_5Cl \cdot nH_2O$ requires the exchange reaction for at least 8 h whereas the inverse transformation from $Gd_{1.80}Ce_{0.20}(OH)_5Cl \cdot nH_2O$ to $Gd_{1.80}Ce_{0.20}(OH)_5Cl \cdot nH_2O$ to $Gd_{1.80}Ce_{0.20}(OH)_5Cl \cdot nH_2O$ to $Gd_{1.80}Ce_{0.20}(OH)_5NO_3 \cdot nH_2O$ is complete even after 2 h reaction at room temperature.