Supporting Information

Rational Design of Phenothiazine (PTz) and Ethylenedioxythiophene (EDOT) Based Donor-Acceptor Compounds with a Molecular Aggregation Breaker for Solid State Emission in Red and NIR region

Elumalai Ramachandran and Raghavachari Dhamodharan *

DEPARTMENT OF CHEMISTRY, INDIAN INSTITUTE OF TECHNOLOGY MADRAS, CHENNAI 600 036, TAMILNADU, INDIA.

E-mail: damo@iitm.ac.in

Scheme S1. Synthesis intermediates.

a) C₁₆H₃₃Br, KOH, DMSO, RT, Overnight, 95 %, b) Br₂, AcOH, RT, 12 h, 88 %, c) TMS-Acetylne, Pd(II), CuI, PPh₃, DIPA/ THF (1:1), 70 °C, 18 h, 65 %, d) K₂CO₃, THF:MeOH (1:1), RT, 6 h, 87 %.

e) DMF/POCl₃, 1,2-dichloroethane, 80 °C, overnight, 87 %, f) NIS, THF:AcOH (1:1), RT, Overnight, 81 %.

References:

- W.-Y. Wong, W.-C. Chow, K.-Y. Cheung, M.-K. Fung, A. B. Djurisic, W.-K. Chan, J. Org. Met. 2009, 2717.
- M. Jessing, M. Brandt, K. J. Jensen, J. B. Christensen, U. Boas, J. Org. Chem. 2006, 71, 6734.
- X. Zhao, M. R. Pinto, L. M. Hardison, J. Mwaura, J. Muller, H. Jiang, D. Witker, V. D. Kleiman, J. R. Reynolds, K. S. Schanze, *Macromolecules*, 2006, 39, 6355.
- 4) Kramer, C. S, Muller, T. J. J. Eur. J. Org. Chem. 2003, 3534
- 5) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
- 6) Lee, B.; Yang, W.; Parr, R. G. Phys. Rev. B. 1988, 37, 785.
- 7) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E.

Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009. Gaussian 09 Revisions A.02, Gaussian Inc. Wallingford CT 2009.

Expansion of ¹³C NMR spectrum of **1**

Figure S4. DEPT NMR spectrum of compound 2

2D NMR spectra of compounds 1and 2

Figure S5. HMBC and HSQC NMR spectra of compound 1

Figure S6. HMBC and HSQC NMR spectra of compound 2

MALDI Spectra of compounds 1and 2:

Data of X-ray crystallographic analysis of compound 1:

CCDC–921593 contains the supplementary crystallographic data for **1**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Empirical formula	$C_{46}H_{49}NO_6S_3$		
Formula weight	808.04		
Temperature	298(2) K		
Wavelength	0.71073 A		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 5.3262(3) Å	$\alpha = 100.032(3)^{\circ}$	
	<i>b</i> = 13.1770(9) Å	$\beta = 92.318(2)^{\circ}$	
	c = 34.470(2) Å	$\gamma = 95.724(3)^{\circ}$	
Volume	2366.2(3) Å ³		
Z	2		
Calculated density	1.134 g/cm ³		
Absorption coefficient	0.200 mm ⁻¹		
F(000)	856		
Crystal size	0.25 x 0.20 x 0.15 mm	1 ³	
Theta range for data collection	0.60 to 25.00°		
Limiting indices	-6<=h<=5, -15<=k<=15, -40<=l<=40		
Reflections collected	21926		
Independent reflections	7690 [R(int) = 0.0408]		
Completeness to theta $= 25.00$	92.0 %		
Absorption correction	None		
Max. and min. transmission	sion 0.9706 and 0.9516		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	7690 / 0 / 506		
Goodness-of-fit on F ²	1.062		
Final R indices [I>2sigma(I)]	R1 = 0.0793, $wR2 = 0.2482$		
R indices (all data)	R1 = 0.1416, $wR2 = 0.2921$		
Largest diff. peak and hole	0.743 and -0.322 e.A ⁻³		

Comparison of powder XRD of 1 in various forms:

Figure S9. Powder XRD pattern of compound 1 in crystal (red line), powder (blue line) and thin film form (violet) compared with the simulated data obtained from SXRD

Powder XRD pattern of the compounds 1 and 2:

Figure S10. Powder XRD Pattern of compounds 1 and 2

¹H NMR analysis of Acetone included crystals of 1

Figure S11. ¹H NMR spectrum of **1** as crystallized (acetone at 2.1 ppm)

Figure S12. ¹H NMR spectrum of **1** after heating at 70 ⁰C for 10 minutes (amount of acetone at 2.1 ppm is reduced)

Figure S13. ¹H NMR spectrum of **1** after heating at 70 ⁰C for 20 minutes (amount of acetone at 2.1 ppm is reduced further)

Figure S14. ¹H NMR spectrum of **1** after grinding well (acetone peak at 2.1 ppm is reduced even further)

Figure S15. ¹H NMR spectrum of 1 after grinding well and heating for 30 minutes (acetone at 2.1 ppm is nearly disappeared)

Figure S17. IR spectrum of compound 1 slightly ground

Figure S18. IR spectrum of compound 1 slightly ground with KBr

Figure S19. IR spectrum of compound 1 strongly ground with KBr

Figure S20. IR spectrum of compound 1 strongly ground with KBr and heated for 30 minutes

Differential scanning calorimetry analysis of acetone included crystals of 1:

Figure S21. Differential scanning calorimetry traces of compounds 1 in single crystal form in the first cycle of heating at $1 \, {}^{0}\text{C}$ / min followed by cooling at $1 \, {}^{0}\text{C}$ / min and second cycle of heating and cooling at $1 \, {}^{0}\text{C}$ / min

Figure S22. Differential scanning calorimetry traces of compounds 1 in the as synthesized form in the first cycle of heating at $1 \, {}^{0}C$ / min followed by cooling at $1 \, {}^{0}C$ / min and second cycle of heating and cooling at $1 \, {}^{0}C$ / min.

Thermogravimetric analysis (TGA) traces of compounds 1 and 2:

Figure S23. Thermogravimetric analysis traces of compounds 1 and 2

Table S1. Thermal properties of 1 and 2.

Cmpd	1	2
$M_p[^{o}C]^{[a]}$	128	100
$T_d[^{\circ}C]^{[b]}$	383	394

[a] determined using a melting point apparatus. [b] T_d : decomposition temperature at which the compound loses 5% of the weight as determined by TGA at a heating rate of 5 °C / min.

UV-visible absorption and fluorescence measurement of 1 and 2 in thin film form dispersed in polystyrene (PS) matrix

Figure S24. UV-visible and fluorescence spectra of aldehyde 1 (left) and dicyanovinyl compound 2 (right) in thin film form dispersed in PS matrix.

Preparation of doped polystyrene (PS) films:

The sample was dissolved in a saturated PS benzene solution (0.1 mg/mL). The resulting solution was dropped onto a quartz plate (10 mm \times 10 mm) and spin-coated at 1000 rpm for 30 seconds. The PS film was dried under reduced pressure at 50 °C for 1 h.

Figure S25. 1 and 2 *a*) in toluene (left vial, 1; right vial, 2). b) as powder. c) drop cast film. d) doped in PS film (Top row, 1; bottom row, 2)

CV Measurement: Cyclic voltammetry (CV) was performed on a CHI 660D electrochemical analyzer. The CV cell consisted of Glassy carbon working electrode, Pt wire counter electrode, and Ag/AgCl reference electrode. A DCM solution of a sample with a concentration of 1 mM and 0.1 M tetrabutylammonium hexafluorophosphate (Bu4PF₆) as supporting electrolyte were used for the measurement at a scan rate of 50 mV/s. The solvent (DCM) was degassed with nitrogen for 15 minutes before making the solution of the compound prior to each experiment.

<i>Tuble 52.</i> Compatibilitient data of compounds 1 and 2

Cpd	Exp wavelength [nm]	Exp Excitation Energy (eV)	Calc. wavelength [nm]	Calc. Excitation Energy (eV)	Transition configuration (coefficient)	Oscillator strength (<i>f</i>)
1	500 (abs edge)	2.48	473	2.62	214 → 215 (0.69889) [HOMO → LUMO]	0.9487
	419 (abs maximum)	2.95	368	3.36	213 → 216 (0.68591) [HOMO-1 → LUMO+1]	0.7640
2	584 (abs edge)	2.12	568	2.18	238→ 239 (0.70124) [HOMO→ LUMO]	1.1880
	493 (abs maximum)	2.51	438	2.83	237 → 240 (0.66884) [HOMO-1 → LUMO+1]	0.7494