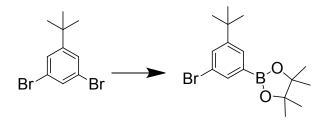
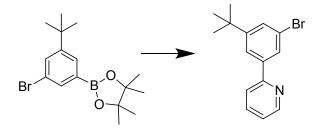
Supporting Information

Strongly phosphorescent platinum(II) complexes supported by tetradentate benzazole-containing ligands

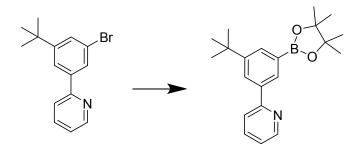
Bin Wang,[†] Feng Liang,[†] Hailiang Hu, Yuan Liu, Zhenhui Kang, Liang-Sheng Liao, and Jian Fan*

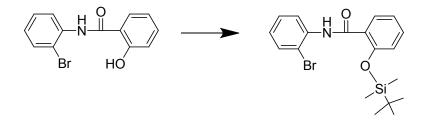

Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China

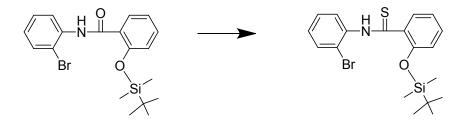
E-mail: jianfan@suda.edu.cn

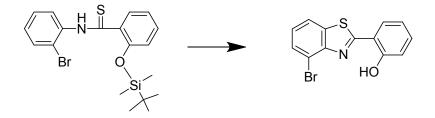

Table of contents

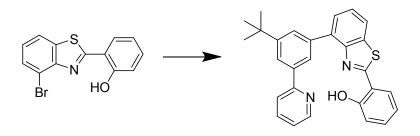
Synthesis	2
¹ H and ¹³ C spectra of ligands and Pt complexes	13
TGA curves of Pt complexes	19
Density functional theory calculation of orbit density	21
Crystal data and structure refinements for Pt3	22
EL spectra of complex Pt1	23
Current efficiency-current density curves for Pt1	24
EQE-luminance-current efficiency curves for Pt1	24
EL spectra of complex Pt2	25
Current efficiency-current density curves for Pt1	26
EQE-luminance-current efficiency curves for Pt2	26
	 ¹H and ¹³C spectra of ligands and Pt complexes TGA curves of Pt complexes Density functional theory calculation of orbit density Crystal data and structure refinements for Pt3 EL spectra of complex Pt1 Current efficiency–current density curves for Pt1 EQE-luminance-current efficiency curves for Pt1 EL spectra of complex Pt2 Current efficiency–current density curves for Pt1

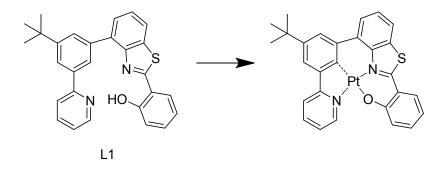

Synthesis

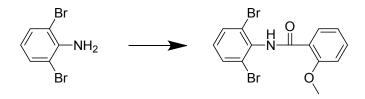

To a solution of 1,3-dibromo-5-(tert-butyl)benzene (1g, 3.4 mmol) in dry THF (50 mL) at -78 °C under N₂, *n*-BuLi (2.6 mL, 1.6 M in hexane, 4.1mmol) was added slowly. The mixture was stirred for 2 hours before the addition of 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxoborolane (0.7 mL, 3.4 mmol). The resulting solution was stirred at room temperature overnight and then quenched with water (10 mL). The product was extracted with chloroform. The organic phase was washed with water and dried over MgSO₄. After removal of the solvent, the residue was used directly for the next step without any additional purification.


A solution of K₂CO₃ (3.3 g, 24 mmol) in 20 mL of degassed water was added to a solution of 2-(3-bromo-5-tert-butyl-phenyl)-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane (2 g, 6 mmol), 2-bromopyridine (0.9 g, 5.7 mmol), and Pd(PPh₃)₄ (346 mg, 0.3 mmol) in 100 mL of toluene. The reaction mixture was heated to reflux overnight before cooling to room temperature. The water phase was extracted with DCM (3×100 mL), and the combined organic phase was washed with water and dried over MgSO₄. The crude product was purified by column chromatography (SiO₂, DCM:PE, 8:1) to afford a white solid (0.7 g, 40%). ¹H NMR (400 MHz, CDCl₃) δ 8.69 (m, 1H), 7.93 (m, 2H), 7.74 (m, 1H), 7.68 (dt, *J* = 8.0, 1.1 Hz, 1H), 7.56 (t, *J* = 1.8 Hz, 1H), 7.27 (m, 1H), 1.37 (s, 9H). GC-MS: m/z calcd 289.074, found 289.10.

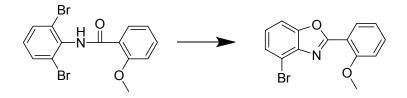

To a solution of 2-(3-bromo-5-(tert-butyl)phenyl)pyridine (2g, 6.9 mmol) in dry THF (50 mL) at -78 °C under N₂, *n*-BuLi (5 mL, 1.6 M in hexane, 8 mmol) was added slowly. The mixture was stirred for 2 hours before the addition of 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxoborolane (1.54 g, 8.3 mmol). The resulting solution was stirred at room temperature overnight before quenched with water (10 mL). The product was extracted with chloroform. The organic phase was washed with water and dried over MgSO₄. After removal of the solvent, the residue was used directly for the next step without any additional purification.


N-(2-bromophenyl)-2-hydroxybenzamide (5 g, 17.2 mmol), tertbutyldimethylsilyl chloride (3.89 g, 25.8 mmol), and imidazole(1.75 g, 25.8 mmol) were dissolved in dry DCM (100 mL). The reaction mixture was stirred at room temperature overnight. The organic phase was washed with water and dried over MgSO₄. After removal of solvent, the residue was used directly for the next step without any additional purification.


N-(2-bromophenyl)-2-((tert-butyldimethylsilyl)oxy)benzamide(5 g, 12.3 mmol) and Lawesson's reagent (7.49 g, 18.5 mmol) were suspended in 100 mL of dry toluene. The reaction mixture was heated to reflux for 10 hours. After evaporation of solvent under reduced pressure, the residue was purified by column chromatography (SiO₂, DCM:PE, 4:5) to afford a yellow solid (3.6 g, 70%). ¹H NMR (400 MHz, CDCl₃) δ 10.17 (s, 1H), 8.26 (dd, *J* = 8.0, 1.8 Hz, 1H), 7.80 (m, 2H), 7.64 (dd, *J* = 8.7, 6.6 Hz, 2H), 7.37 (m, 1H), 7.14 (m, 1H), 6.91 (m, 1H), 1.04 (s, 9H), 0.23 (s, 6H). GC-MS: m/z calcd 421.053, found 421.075.


To a suspension of N-(2-bromophenyl)-2-((tertbutyldimethylsilyl)oxy)benzothioamide (1 g, 2.4 mmol) in a small amount of ethanol was added 30% aqueous sodium hydroxide (19 mmol, 760 mg). The mixture was stirred for 10 min, and then was diluted with water to give a solution of 10% NaOH. The diluted sample was added dropwise to an aqueous solution of potassium ferricyanide (20 wt%) at 80-90°C. The reaction mixture was stirred for 1.5 hours before cooling down to room temperature. The solution was poured into ice-water mixture and neutralized with dilute aqueous HCl. The product was extracted with chloroform (3×100 mL). The organic phase was washed with water and dried over MgSO₄. After the removal of solvent, the residue was purified by column chromatography (SiO₂, DCM:PE, 3:1) to afford a white solid (250 mg, 35%). ¹H NMR (400 MHz, CDCl₃) δ 12.42 (s, 1H), 7.84 (dd, J = 8.0, 0.9 Hz, 1H), 7.76 (m, 2H), 7.48 (m, 1H), 7.28 (t, J = 5.6 Hz, 1H), 7.13 (dd, J = 8.3, 0.9 Hz, 1H), 7.02 (m, 1H). GC-MS: m/z calcd 304.95, found 304.75.

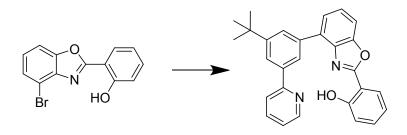
A solution of K₂CO₃ (0.27 g, 1.96 mmol) in 20 mL of degassed water was added to a solution of 2-(3-(tert-butyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)phenyl)pyridine (165 mg, 0.49 mmol), 2-(7-bromobenzo[d]thiazol-2-yl)phenol (150 mg, 0.49 mmol), and Pd(PPh₃)₄ (28 mg, 0.025 mmol) in toluene (100 mL) under N₂. The reaction mixture was heated to reflux overnight before cooling to room temperature. The water phase was extracted with DCM (3×100 mL), and the combined organic phase was washed with water and dried over MgSO₄. The crude product was purified by column chromatography (SiO₂, DCM:PE, 3:2) to afford a white solid (165 mg, 77%). ¹H NMR (400 MHz, DMSO-*d*₆) δ11.74 (s, 1H), 8.72 (d, J = 5.5 Hz, 1H), 8.33 (s, 1H), 8.23 – 8.17 (m, 2H), 8.12 (dd, J = 14.9, 8.0 Hz, 2H), 8.06 (s, 1H), 7.98 – 7.86 (m, 1H), 7.78 (d, J = 7.4 Hz, 1H), 7.59 (t, J = 7.8 Hz, 1H), 7.40 (dd, J = 14.2, 8.7 Hz, 2H), 7.07 (d, J = 8.2 Hz, 1H), 7.00 (t, J = 7.5 Hz, 1H), 1.46 (s, 9H). ¹³C NMR (600 MHz, CDCl₃) δ 169.06, 158.20, 158.11, 152.15, 149.80, 139.85, 139.08, 136.88, 136.31, 133.62, 132.86, 128.49, 127.39, 127.22, 125.94, 125.23, 124.11, 122.18, 121.13, 120.65, 119.49, 118.12, 116.99, 35.30, 31.66. GC-MS: m/z calcd 436.16, found 436.08.



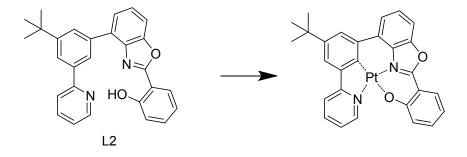
L1 (50 mg, 0.11 mmol) and K₂PtCl₄ (57 mg, 0.138 mmol) were added into a mixture of CHCl₃/AcOH (20 mL, v/v= 1:9) under N₂. The reaction solution was heated to reflux for 24 hours. After cooling to room temperature, the precipitate was collected by filtration. The crude product was purified by column chromatography (SiO₂, DCM) to afford a yellow solid (36 mg, 50%). ¹H NMR (400 MHz, CDCl₃) δ 9.58 (d, J = 5.5 Hz, 1H), 8.50 (d, J = 8.0 Hz, 1H), 8.34 (s, 1H), 8.01 – 7.80 (m, 4H), 7.74 (s, 1H), 7.59 (t, J = 7.8 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.36 (t, J = 5.6 Hz, 1H), 7.31 (d, J = 8.5 Hz, 1H), 6.72 (t, J = 7.4 Hz, 1H), 1.51 (s, 9H). ¹³C NMR (600 MHz, CDCl₃) δ 167.24, 163.95, 163.19, 147.17, 146.04, 145.90, 142.02, 138.76, 138.70, 133.65, 132.92, 130.99, 130.81, 130.48, 125.09, 125.04, 123.30, 122.76, 121.62, 121.11, 119.65, 118.60, 117.41, 115.83, 35.08, 31.74. MALDI-TOF (m/z): calculated for: 629.110, found: 629.186. Anal. calcd for C₂₈H₂₂N₂OPtS: C, 53.41; H, 3.52; N, 4.45; S, 5.09; found: C, 53.66; H, 3.49; N, 4.56; S, 5.53%.

To a solution of 2,6-dibromo-phenylamine (4 g, 15.9 mmol) in THF (30 mL) was added 2-methoxy-benzoyl chloride (2.7 g, 15.9 mmol). The reaction solution was stirred at room temperature overnight. After removal of solvent, the residue was extracted with ethyl acetate. The organic phase was neutralized with aqueous solution of NaHCO₃ and dried over MgSO₄. After removal of solvent, the remaining oily residue was solidified with the addition of diisopropyl ether (4.48 g, 73%). ¹H NMR

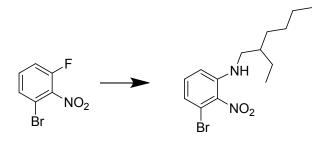
(400 MHz, CDCl₃) δ 9.62 (d, *J* = 39.3 Hz, 1H), 8.39 (m, 1H), 7.65 (d, *J* = 8.1 Hz, 2H), 7.60 (m, 1H), 7.23 (m, 1H), 7.06 (dt, *J* = 11.8, 6.6 Hz, 2H), 4.10 (s, 3H). GC-MS: m/z calcd 384.91, found 384.75.

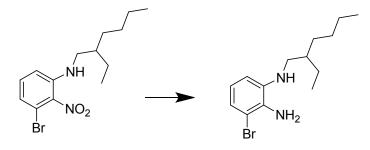


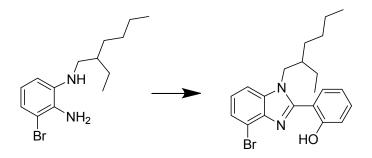
N-(2,6-dibromophenyl)-2-methoxybenzamide (4 g, 10.4 mmol), CuI (197 mg, 1.03 mmol), Cs₂CO₃(374 mg, 1.1 mmol), and 1,10-phenanthroline (5 g, 27.7 mmol) were added into 10 mL of DME. The reaction mixture were heated at 90 °C overnight, and the solution changed color from yellow to black. After cooling down to room temperature, a large amount of water was added the reaction system. The water phase was extracted with DCM (3×100 mL), and the organic phase was washed with water and dried over MgSO₄. After the removal of solvent, the residue was purified by column chromatography (SiO₂, DCM:PE, 5:4) to afford a white solid (2.77 g, 87.6%). ¹H NMR (400 MHz, CDCl₃) δ 8.20 (m, 1H), 7.52 (m, 3H), 7.21 (dd, *J* = 15.2, 7.1 Hz, 1H), 7.13 (m, 2H), 4.00 (s, *J* = 4.1 Hz, 3H). GC-MS: m/z calcd 304.98, found 304.95.

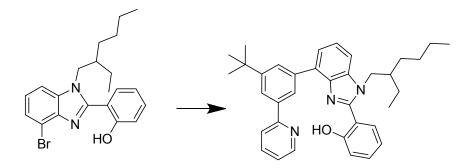


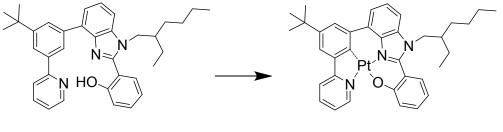
To a solution of BBr₃ (17.3 mL, 1M in DCM, 17.3 mmol) in DCM were added 4bromo-2-(2-methoxyphenyl)benzo[d]oxazole (1.32 g, 4.3 mmol) and KI (2.88 g, 17.4 mmol). The reaction mixture was stirred overnight at room temperature, and the color turned into reddish brown. The reaction was quenched with the addition of ethanol, and then the solvent was removed by evaporation. The residue was purified by column chromatography (SiO₂, DCM) to afford a white solid (1.15 g, 92%). ¹H NMR


(400 MHz, CDCl₃) δ 11.28 (s, 1H), 8.02 (dd, J = 7.9, 1.6 Hz, 1H), 7.60 (m, 2H), 7.51 (m, 1H), 7.32 (m, 1H), 7.15 (dd, J = 8.4, 0.8 Hz, 1H), 7.07 (m, 1H). GC-MS: m/z calcd 288.97, found 288.75.


A solution of K₂CO₃ (2.28 g, 16 mmol) in degassed water (20 mL) was added to a 2-(3-(tert-butyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2solution of yl)phenyl)pyridine (1.54 g, 4.56 mmol), 2-(4-bromobenzo[d]oxazol-2-yl)phenol (1.2 g, 4.1 mmol), and Pd(PPh₃)₄ (236 mg, 0.25 mmol) in toluene (100 mL). The reaction mixture was heated to reflux overnight. The water phase was extracted with DCM (3×100 mL), and the combined organic phase was washed with water and dried over MgSO₄. After the removal of solvent, the residue was purified by column chromatography (SiO₂, DCM:PE,1:1) to afford a white solid (900 mg, 51.7%). ¹H NMR (400 MHz, DMSO-*d6*) δ 11.37 (s, 1H), 8.77 (m, 1H), 8.39 (t, *J* = 1.6 Hz, 1H), 8.20 (t, J = 1.7 Hz, 1H), 8.18 (m, 3H), 8.00 (m, 2H), 7.83 (dd, J = 7.7, 0.8 Hz, 1H), 7.61 (t, J = 8.0 Hz, 1H), 7.58 (m, 1H), 7.40 (m, 1H), 7.14 (m, 2H), 1.45 (s, 9H). ¹³C NMR (600 MHz, CDCl₃) δ 163.06, 159.01, 158.04, 152.29, 149.87, 149.82, 139.99, 137.95, 137.19, 136.92, 133.75, 133.04, 127.27, 127.09, 125.72, 124.64, 124.40, 123.95, 122.26, 121.01, 119.69, 117.64, 110.73, 109.61, 35.30, 31.68. GC-MS: m/z calcd 420.18, found 420.19.


L2 (1 g, 2.38 mmol) and K₂PtCl₄ (1.18 g, 2.86 mmol)) were added into a mixture of CHCl₃/AcOH (80 mL, v/v= 1:9) under N₂. The reaction solution was heated to reflux for 24 hours. After cooling to room temperature, the precipitate was collected by filtration. The crude product was purified by column chromatography (SiO₂, DCM) to afford a yellow solid (800 mg, 54.8%).1H NMR (400 MHz, CDCl₃) δ 9.25 (d, J = 5.1 Hz, 1H), 8.16 (s, 1H), 8.06 (d, J = 7.7 Hz, 2H), 7.83 (t, J = 7.6 Hz, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.62 (s, 1H), 7.55 – 7.40 (m, 3H), 7.30 (t, J = 6.4 Hz, 1H), 7.13 (d, J = 8.6 Hz, 1H), 6.75 (t, J = 7.4 Hz, 1H), 1.51 (s, 9H). ¹³C NMR (600 MHz, CDCl₃) δ 167.19, 167.07, 156.88, 149.43, 147.12, 146.13, 145.71, 138.43, 137.66, 133.34, 130.60, 129.56, 128.77, 127.51, 125.23, 124.98, 122.00, 121.71, 121.13, 119.67, 118.67, 115.16, 109.43, 107.98, 35.00, 31.73. MALDI-TOF (m/z): calculated for: 613.133, found: 613.237. Anal. calcd for C₂₈H₂₂N₂O₂Pt: C, 54.81; H, 3.61; N, 4.57; found: C, 54.80; H, 3.52; N, 4.61%.


1-bromo-3-fluoro-2-nitro-benzene (1 g, 9 mmol) and 2-ethylhexylamine (5.805 g, 45 mmol) were added into 30 mL of ethanol. The reaction mixture was stirred at room temperature overnight. After the removal of solvent, the residue was extracted with DCM (3×100 mL), and the organic phase was washed with water and dried over MgSO₄. A yellow oil was obtained after the removal of solvent, which was used directly for the next step without any additional purification (1.2 g, 80%) GC-MS: m/z calcd 328.08, found 328.02.


To a solution of 3-bromo-N-(2-ethylhexyl)-2-nitroaniline (5 g, 15.2 mmol) in 150 mL of AcOH was added iron powder (15 g, 268 mmol). The reaction mixture was heated at 60 °C for 1h, and the solution changed color from orange to dark brown. After the removal of solvent, the residue was extracted with DCM (3×100 mL). The crude product was purified by column chromatography (SiO₂, DCM:PE, 1:1) to afford a brown solid (3.2 g, 70%).¹H NMR (400 MHz, DMSO-*d6*) δ 6.72 (m, 1H), 6.44 (dd, *J* = 10.1, 5.6 Hz, 1H), 6.38 (dd, *J* = 7.9, 1.4 Hz, 1H), 4.72 (s, 3H), 2.96 (d, *J* =6.8 Hz, 2H), 1.70 (m, 9H), 0.88 (m, 6H). GC-MS: m/z calcd 298.10, found 298.26.

3-bromo-N1-(2-ethylhexyl)benzene-1,2-diamine (0.45 g, 1.5 mmol) and 2-hydroxybenzaldehyde (0.183 g, 1.5 mmol) were dissolved in 30 mL of 1,4-dioxane. The reaction mixture was heated to reflux for 5 hours. After the removal of solvent, the residue was dissolved in 30 mL of toluene before the addition of activated MnO₂ (0.533 g, 6.19 mmol). The suspension was heated to reflux overnight. The crude product was purified by column chromatography (SiO₂, DCM:PE, 3:2) to afford a white solid (0.31g, 51%). ¹H NMR (400 MHz, DMSO-*d6*) δ 10.30 (s, 1H), 7.62 (d, *J* = 7.6 Hz, 1H), 7.51 (m, 3H), 7.21 (t, *J* = 7.9 Hz, 1H), 7.08 (m, 2H), 4.11 (d, *J* = 7.4 Hz, 2H), 1.35 (m, 9H), 0.88 (m, 6H). GC-MS: m/z calcd 401.34, found 401.12.

A solution of K₂CO₃ (500 mg, 3.6 mmol) in degassed water (20 mL) was added to a of 2-(3-(tert-butyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2solution yl)phenyl)pyridine (120)0.36 mmol), 2-[4-bromo-1-(2-ethylhexyl)-1Hmg, benzoimidazol-2-yl]phenol (142 mg, 0.36 mmol), and Pd(PPh₃)₄ (20 mg, 0.018 mmol) in toluene (100 mL). The reaction mixture was heated to reflux overnight. The water phase was extracted with DCM (3×100 mL), and the combined organic phase was washed with water and dried over MgSO₄. After the removal of solvent, the residue was purified by column chromatography (SiO₂, DCM:EtOAc, 9:1) to afford a white solid (120 mg, 63%). ¹H NMR (400 MHz, DMSO-*d6*) δ 10.84 (s, 1H), 8.69 (d, J = 3.9 Hz, 1H), 8.44 (s, 1H), 8.18 (s, 1H), 8.10 (d, J = 1.7 Hz, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.89 (td, J = 7.8, 1.8 Hz, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.58 - 7.51 (m, 2H), 7.46 -7.31 (m, 3H), 7.03 (d, J = 7.7 Hz, 1H), 6.97 (t, J = 7.5 Hz, 1H), 4.26 (d, J = 7.5 Hz, 2H), 1.42 (s,9H), 1.23 (m, 9H), 0.72 (m, 6H). ¹³C NMR (600 MHz, CDCl3) δ 159.42, 158.37, 152.04, 151.63, 149.74, 139.71, 138.30, 138.22, 136.85, 136.46, 132.37, 131.51, 127.31, 126.77, 125.07, 123.58, 122.63, 122.04, 121.17, 118.52, 118.47, 113.73, 109.66, 49.87, 39.47, 35.26, 31.71, 30.60, 28.47, 25.06, 23.98, 23.05, 14.09.GC-MS: m/z calcd 531.32, found 531.27.

L3

L3 (1 g, 1.8 mmol) and K₂PtCl₄ (780 mg, 1.8 mmol)) were added into a mixture of CHCl₃/AcOH (80 mL, v/v= 1:9) under N₂. The reaction solution was heated to reflux for 24 hours. After cooling to room temperature, the precipitate was collected by filtration. The crude product was purified by column chromatography (SiO₂, DCM) to afford a yellow solid (800 mg, 58%).¹H NMR (400 MHz, CDCl3) δ 9.47 (d, J = 5.5 Hz, 1H), 8.36 (s, 1H), 8.23 (d, J = 7.8 Hz, 1H), 7.96 – 7.81 (m, 3H), 7.73 (s, 1H), 7.53 (t, J = 7.9 Hz, 1H), 7.49 – 7.37 (m, 3H), 7.32 (t, J = 5.8 Hz, 1H), 6.78 – 6.64 (m, 1H), 4.71 – 4.46 (m, 2H), 1.50 (s, 9H), 1.23 – 0.98 (m, 9H), 0.74 (m, 6H). ¹³C NMR (600 MHz, CDCl₃) δ 167.37, 166.91, 147.43, 147.30, 145.98, 145.75, 139.22, 138.21, 136.50, 131.71, 131.15, 130.85, 130.29, 128.41, 125.21, 123.51, 122.22, 121.68, 120.88, 118.82, 118.66, 114.14, 112.37, 109.06, 52.05, 38.41, 35.03, 31.73, 30.37, 28.38, 23.63, 22.98, 14.09, 10.41.MALDI-TOF (m/z): calculated for:724.274, found: 724.310. Anal. calcd for C₃₆H₃₉N₃OPt: C, 59.66; H, 5.42; N, 5.80; found: C, 59.68; H, 5.56; N, 5.92%.

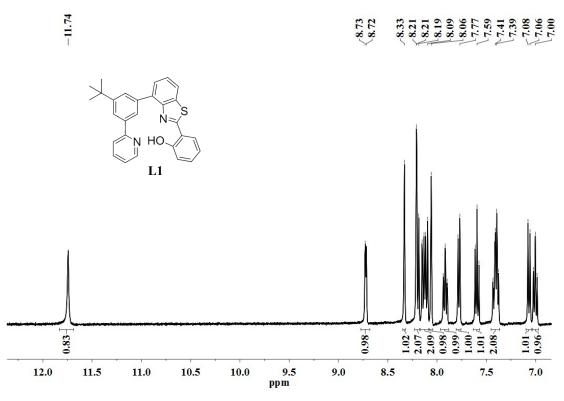


Figure S1. ¹H NMR spectrum of ligand of L1 (DMSO-*d6*)

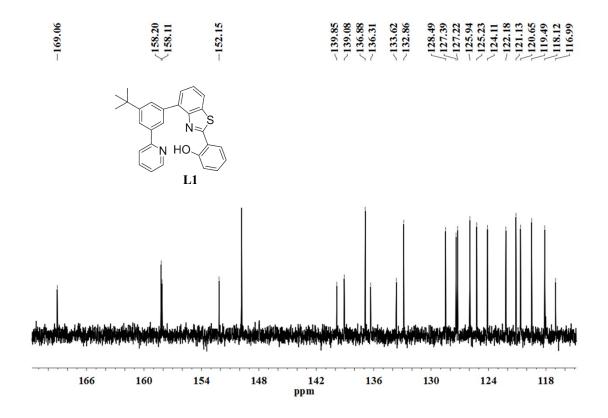


Figure S2. ¹³C NMR spectrum of ligand of L1 (CDCl₃)

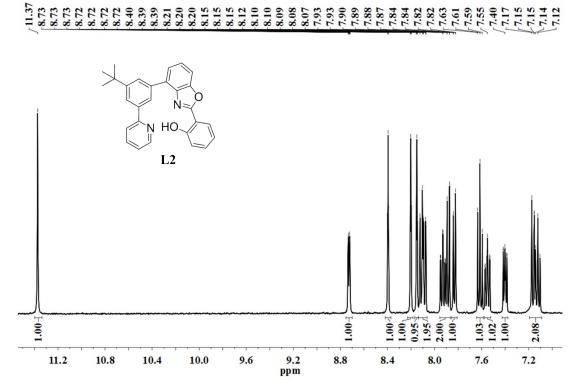


Figure S3. ¹H NMR spectrum of ligand of L2 (DMSO-*d6*)

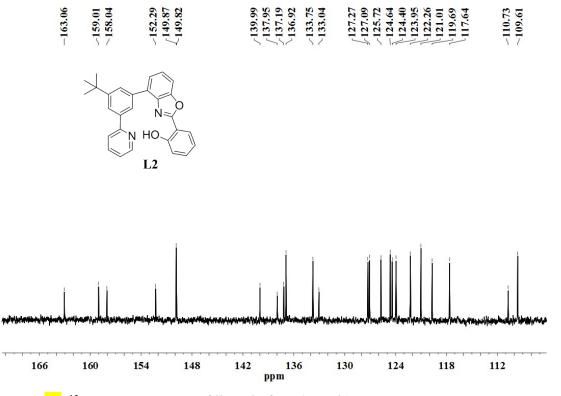


Figure S4. ¹³C NMR spectrum of ligand of L2 (CDCl₃)

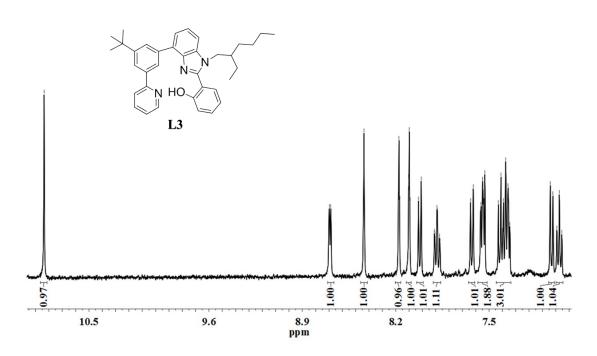


Figure S5. ¹H NMR spectrum of ligand of L3 (DMSO-*d6*)

-10.84

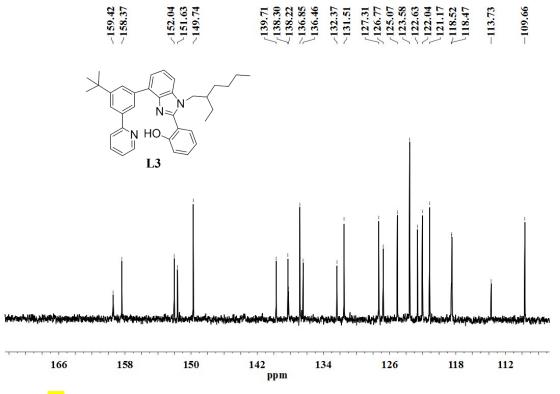


Figure S6. ¹³C NMR spectrum of ligand of L3 (CDCl₃)

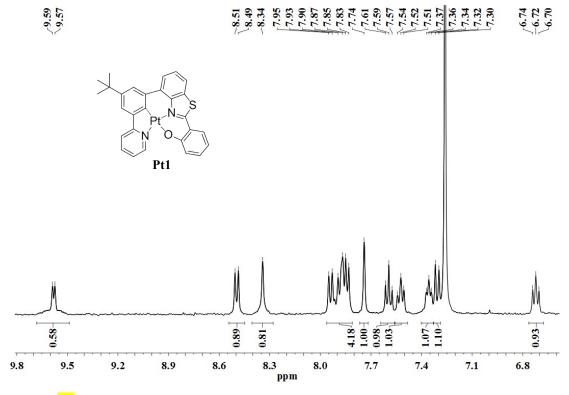


Figure S7. ¹H NMR spectrum of complex of Pt1 (CDCl₃)

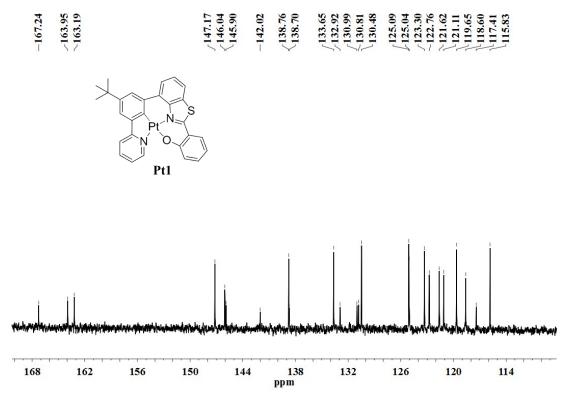


Figure S8. ¹³C NMR spectrum of complex of Pt1 (CDCl₃)

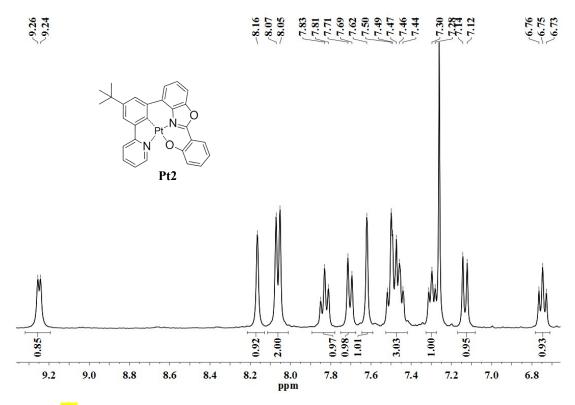


Figure **S9.** ¹H NMR spectrum of complex of **Pt2** (CDCl₃)

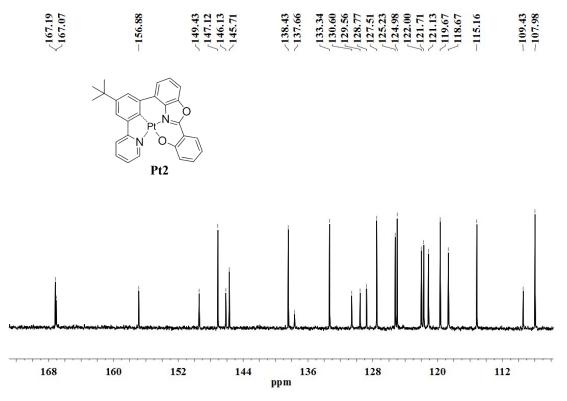
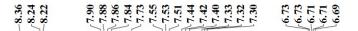



Figure S10. ¹³C NMR spectrum of complex of Pt2 (CDCl₃)

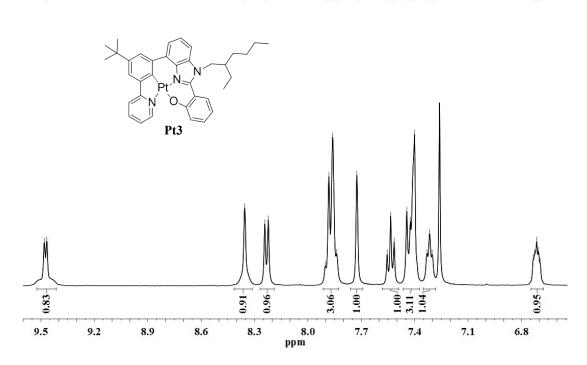


Figure S11. ¹H NMR spectrum of complex of Pt3 (CDCl₃)

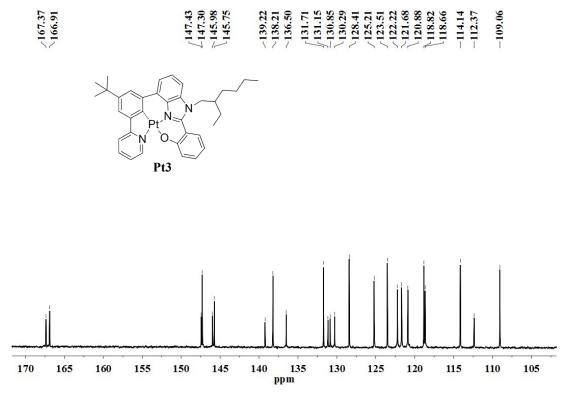


Figure S12. ¹³C NMR spectrum of complex of Pt3 (CDCl₃)

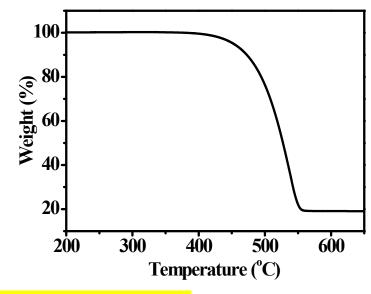


Figure S13. TGA curve of Pt1.

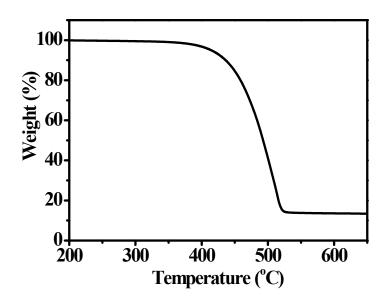


Figure S<mark>14</mark>. TGA curve of **Pt2**.

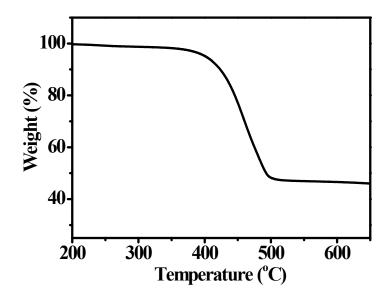
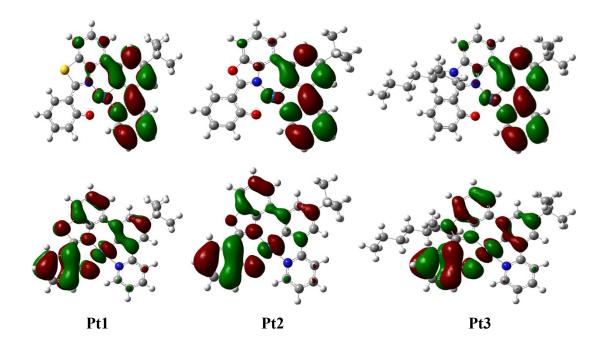



Figure S<mark>15</mark>. TGA curve of Pt3.

Figure S16. Density functional theory calculation of orbit density for the HOMOs (bottom) and LUMOs (top) of **Pt1**, **Pt2** and **Pt3**.

Compound	Pt3
Empirical formula	C ₃₆ H ₃₉ N ₃ OPt
Formula weight	724.79
Crystal system	Monoclinic
Space group	$P2_{1}/c$
<i>a</i> (Å)	6.9855(8)
<i>b</i> (Å)	14.6481(17)
<i>c</i> (Å)	29.888(3)
α (deg)	90.00
β (deg)	94.743(2)
γ (deg)	90.00
$V(Å^3)$	3047.8(6)
Ζ	4
$D_{\rm c}$ (g/cm ³)	1.580
μ (mm ⁻¹)	4.637
F(000)	1448.0
Collcd reflns	15830
Unique reflns	5354
parameters	370
$R_{ m int}$	0.0742
GOF	1.012
$R_{1^{a}}[I > 2\sigma(I)]$	0.0521
wR_2^{b} (all data)	0.1067

 Table S1. Crystal data and structure refinements for compound Pt3.

 $\overline{{}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; {}^{b}wR_{2} = \sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}]^{1/2}}.$

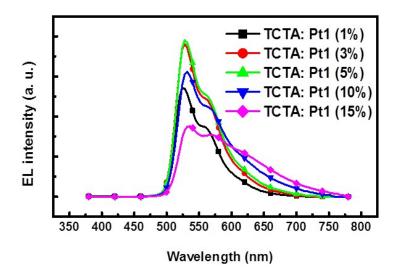


Figure S17. The EL spectra of complex Pt1 with different doping ratios at 5 mA/cm².

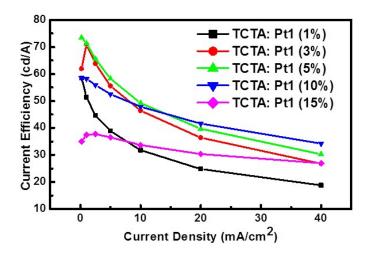
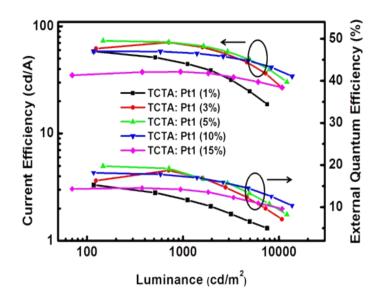



Figure S18. The current efficiency–current density curves for Pt1 at different doping ratios.

Figure S19. The EQE-luminance-current efficiency curves for **Pt1** at different doping ratios.

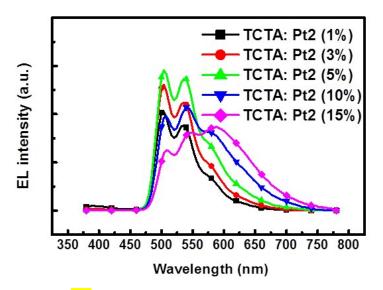


Figure S20. The EL spectra of complex Pt2 with different doping ratios at 5 mA/cm².

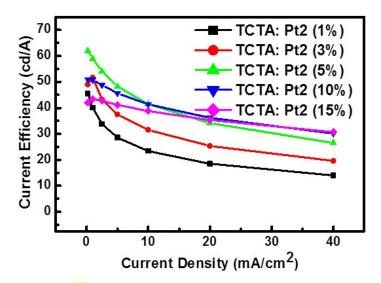
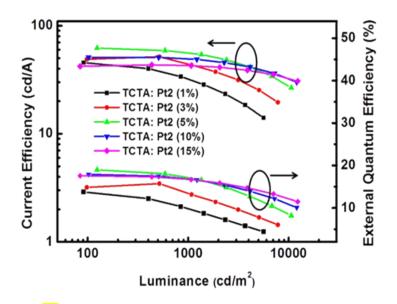



Figure S21. The current efficiency–current density curves for Pt2 at different doping ratios.

Figure S22. The EQE-luminance-current efficiency curves for **Pt2** at different doping ratios.