Donor-acceptor-donor conjugated oligomers based on isoindigo and anthra[1,2-*b*]thieno[2,3-*d*]thiophene for organic thin-film transistors: effect of alkyl side chain length on semiconducting properties

Jing Shao,^{†,‡} Xiaojie Zhang,[†] Hongkun Tian,^{*,†} Yanhou Geng,^{*,†} and Fosong Wang[†]

[†]State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
[‡]University of Chinese Academy of Science, Beijing 100049, P. R. China.
Corresponding author: <u>yhgeng@ciac.ac.cn; hktian@ciac.ac.cn</u>

Figure S1. MALDI-TOF MS of all the three oligomers.

Figure S2. Thermogravimetric analysis (TGA) curves of all the three oligomers.

Table S1. OTFT device performance of 2ATT-IID-C8C10, 2ATT-IID-C6C8 and2ATT-IID-C4C6 annealed at other temperatures.

Figure S3. Representative output and transfer characteristics of OTFT devices based on thermally annealed films of **2ATT-IID-C8C10**. The annealing was done in nitrogen for 15 minutes at 60 °C and 150 °C.

Figure S4. Representative output and transfer characteristics of OTFT devices based on thermally annealed films of **2ATT-IID-C6C8**. The annealing was done in nitrogen for 15 minutes at 60 °C and 150 °C.

Figure S5. Representative output and transfer characteristics of OTFT devices based on thermally annealed films of **2ATT-IID-C4C6**. The annealing was done in nitrogen for 15 minutes at 150 °C and 200 °C.

Figure S1. MALDI-TOF MS of all the three oligomers.

Figure S2. Thermogravimetric analysis (TGA) curves of all the three oligomers.

oligomer	T _a (°C) ^a	$\mu_{max/\mu_{ave}} (cm^2 V^{-1} s^{-1})^b$	$V_T(V)^c$	I_{on}/I_{off}^{d}
2ATT-IID-C8C10	60	0.028 /0.023	-14 ~ -3	$10^4 \sim 10^5$
	150	0.022/0.020	-10 ~ -2	$10^4 \sim 10^5$
2ATT-IID-C6C8	60	0.10/0.076	-12 ~ -1	$10^4 \sim 10^7$
	150	0.022/0.016	-9 ~ -2	$10^4 \sim 10^7$
2ATT-IID-C4C6	150	0.43/0.39	-15 ~ -10	$10^{5} \sim 10^{8}$
	200	0.60/0.50	-16 ~ -12	$10^5 \sim 10^8$

Table S1. OTFT device performance of **2ATT-IID-C8C10**, **2ATT-IID-C6C8** and **2ATT-IID-C4C6** annealed at other temperatures.

^aThermal annealing was carried out in nitrogen for 15 min. ^bMobility calculated from saturation regime, and average mobility was calculated from more than 5 parallel devices. ^cThreshold voltage. ^dCurrent on/off ratio.

Figure S3. Representative output (a, c) and transfer characteristics (b, d) of OTFT devices based on thermally annealed films of **2ATT-IID-C8C10**. The annealing was done in nitrogen for 15 minutes at 60 °C (a, b) and 150 °C (c, d).

Figure S4. Representative output (a, c) and transfer characteristics (b, d) of OTFT devices based on thermally annealed films of **2ATT-IID-C6C8**. The annealing was done in nitrogen for 15 minutes at 60 °C (a, b) and 150 °C (c, d).

Figure S5. Representative output (a, c) and transfer characteristics (b, d) of OTFT devices based on thermally annealed films of **2ATT-IID-C4C6**. The annealing was done in nitrogen for 15 minutes at 150 °C (a, b) and 200 °C (c, d).