Supporting Information

Fluorescent crystals and co-crystals of 1,8-naphthalimide

derivatives: synthesis, structure determination and

photophysical characterization

Fabrizia Grepioni,^{a,}* Simone d'Agostino,^{a,}* Dario Braga,^a Alessio Bertocco,^a Luca Catalano,^a Barbara Ventura^{b,}*

(a) Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via F. Selmi 2, 40126Bologna, Italy.

(b) Istituto per la Sintesi Organica e la Fotoreattività (ISOF) – CNR, Via P. Gobetti 101, 40129
 Bologna, Italy.

Table of Contents

Crystallographic data for crystalline 4 Form I	Page 3
Superimposition of Form I and Form II molecular structures for crystalline 4	Page 3
Types of dimers observed in crystalline 2-4	Page 4
Types of dimers observed in co-crystals n ₂ ·I2F4	Page 4
XRPD for crystalline 2-4 and co-crystals n₂·I2F4	Page 5
ATR-FTIR spectra of components I2F4, 3 and product 3 ₂ ·I2F4	Page 6
ATR-FTIR spectra of components I2F4, 4 and product 4₂·I2F4	Page 6
TGA thermograms for the compounds 2, 3 (Form I and Form II), and 4 (Form II)	Page 7
Traces for the compounds: (a) 2, (b1) 3 (Form I), (b2) 3 (Form II), and (c) 4 (Form II)	Page 8
VT-XRPD patterns for crystalline 3 (Form II)	Page 9
TGA thermograms for the co-crystals n ₂ ·I2F4	Page 9
Absorption and emission spectra of 3 and 4 in solution	Page 10
Luminescence data in toluene glassy matrix at 77 K	Page 11
Fluorescence spectra of 2 , 3 and 4 in toluene at 77K	Page 11
Structural detail for crystalline 42·I2F4	Page 12

	Δ		
Formula	C ₂₃ H ₂₁ N ₃ O ₂	D _{calc} (g/cm ³)	1.349
fw	371.43	packing coefficient	69.9
		(%) ^a	
Cryst. System	Orthorhombic	accessible void (Å ³) ^a	0
Space group	Pna2 ₁	μ (mm ⁻¹)	0.088
Z	4	Measd refins	7735
a (Å)	30.652(5)	Indep reflns 3143	
b (Å)	5.3082(9)	$R_1[\text{on } F_0^2, I > 2\sigma(I)]$ 0.0663	
c (Å)	11.243(2)	wR ₂ (all data) 0.111	
α (deg)	90		
β (deg)	90		
γ (deg)	90		
V (Å ³)	1829.3(6)		

Table S1. Crystallographic data and details of measurements for crystalline 4 Form I.

^aCalculated with Platon; for the accessible void calculation a probe of 1.2 Å³ was employed.

Figure S1. Top (left) and side (right) views for the superimposition of **4** (**Form I**) (orange) and **4** (**Form II**) (yellow) molecular structures for crystalline **4**, showing that the two conformations are almost exactly the same in the two polymorphs. H_{CH} are omitted for clarity.

Figure S2. Types of dimers observed in crystalline **2-4**: (a) head-to-tail dimer in crystalline **2**, CD = 3.8Å, ID = 3.4Å, offset = 1.7 Å; (b) head-to-head dimer in crystalline **3**: CD = 5.3 Å, ID = 3.5 Å, offset 3.9 Å (left), and T-dimers with dC–H··· π = 3.2 Å or dC··· π = 4.0 Å (right); (c) head-to-head dimer in crystalline **4** (**Form I**): CD = 5.3 Å, ID = 3.5 Å, offset 3.9 Å (left), and T-dimers dC–H··· π = 2.7 –2.9 Å or dC··· π = 3.6 Å (right), and (d)head-to-head dimer in crystalline **4** (**Form II**): CD = 4.6 Å, ID = 3.3 Å, offset 3.2 Å. H_{CH} omitted for clarity.

Figure S3. Types of dimers observed in **n**₂**·12F4** co-crystals. (a) head-to-head dimer in crystalline **2**₂**·12F4**, CD = 5.2 Å, ID = 3.3 Å, offset = 4.0Å (left), and T-dimer dC–H··· π = 2.8 –3.1 Å or dC··· π = 3.7 – 3.8 Å (right); (b) head-to-head dimer in crystalline **3**₂**·12F4**, CD = 4.1 Å, ID = 3.5 Å, offset = 2.1Å; (c) T-dimer in crystalline**4**₂**·12F4**, dC–H··· π = 2.8-3.0 Å or dC··· π = 3.7-3.9 Å.H_{CH} omitted for clarity.

Figure S4. Experimental (red-line) and simulated (black-line) X-ray powder diffraction patterns for compounds: (a) **2**, (b) **3**, and (c) **4** of for corresponding co-crystals: (d) **2**₂**·I2F4**, (e) **3**₂**·I2F4**, and (f) **4**₂**·I2F4**.

Figure S5. ATR-FTIR spectra of components I2F4 (black line), **3** (red line) and **3**₂**·I2F4** (green line) in the range 4000-600 cm⁻¹. The inset highlights the shifts to higher frequencies for the vC_{pyr}—H stretching (from **3**) of the pyridine involved in the halogen bond.

Figure S6. ATR-FTIR spectra of components I2F4 (black line), **4** (red line) and **4**₂**·I2F4** (green line) in the range 4000-600 cm⁻¹. The inset highlights the shifts to higher frequencies for the vC_{pyr}—H stretching (from **4**) of the pyridine involved in the halogen bond.

Thermal characterization (TGA-DSC-VTPXRD).

Figure S7. TGA thermograms for the compounds 2, 3 (Form I and Form II), and 4 (Form II).

Differential scanning calorimetry (DSC) measurements below the decomposition temperature were also performed, and are shown in SI-Figure 8. For compound **2** the DSC trace shows that melting occurs at ca 190 °C (peak temperature, $\Delta H = 35.8$ kJ mol⁻¹) in the first heating cycle; recrystallization to the same crystalline form is observed in a second heating cycle (exothermic peak at 108 °C, peak temperature, $\Delta H = 17.8$ kJ mol⁻¹), followed by melting at 190 °C (peak temperature, $\Delta H = 35.0$ kJ mol⁻¹) (see SI-Fig. 8).Compound **3** (Form I) melts at 157 °C (peak temperature, $\Delta H = 28.9$ kJ mol⁻¹) but a second, small peak is observed at ca. 175 °C. Recrystallization occurs during the cooling process and in a second heating cycle, in which melting is observed at 156 °C (peak temperature, $\Delta H = 2.5$ KJ mol⁻¹). When the same measurement is performed on a sample of **3** (Form II) melting is now observed at 176 °C (peak temperature, $\Delta H = 38.9$ kJ mol⁻¹), and recrystallization occurs on a second heating cycle to **3** (Form I), which melts at 156 °C (peak temperature, $\Delta H = 5.1$ kJ mol⁻¹). The small peak observed at 175 °C in the DSC trace of Form I is likely due to traces of Form II.

The DSC trace of compound **4** (**Form II**) shows an endothermic peak at 181 °C (peak temperature, $\Delta H = 35.9 \text{ kJ mol}^{-1}$), due to melting. A second heating cycle shows the compound melts at the same temperature, i.e. **Form II** recrystallizes from the melt.

The thermal behavior of **3** (Form II) has also been investigated via variable temperature X-ray powder diffraction (see SI-Figure 8).

Figure S8. DSC traces for the compounds: (a) 2, (b1) 3 (Form I), (b2) 3 (Form II), and (c) 4 (Form II).

Figure S9. VT-XRPD patterns for crystalline **3** (**Form II**) at RT (a), at 180 °C (melting occurs) (b) and back at RT (the solid is amorphous); a second heating to 153 °C (d) shows recrystallization to **3** (**Form I**).

Figure S10. TGA thermograms for the co-crystals 22·12F4, 32·12F4, and 42·12F4.

Figure S11. Absorption (a, c) and normalized emission (b, d) spectra of **3** (a, b) and **4** (c, d) in the explored solvents at room temperature.

	λ_{fl}^{max} / nm ^a	τ / ns ^b	<i>E</i> / eV
2	491	7.0	2.53
3	493	7.2	2.51
4	493	7.1	2.51

 Table S2.
 Luminescence data in toluene glassy matrix at 77 K.

^a From corrected spectra. ^bFluorescence lifetimes, excitation at 373 nm.

Figure S12. Normalized fluorescence spectra of **2** (black), **3** (red) and **4** (green) in toluene at 77K. Excitation at 400 nm.

Figure S13. Structural detail that highlights how the halogenated co-formers lie above and below the naphthalimide units in crystalline **4**₂**·I2F4**. H_{CH} omitted for clarity.