Electronic Supplementary Information

Tuning the magneto-optical response of TbPc₂ single molecule magnets by the choice of the substrate

Peter Robaschik,^{a,1} Michael Fronk,^a Marius Toader,^b Svetlana Klyatskaya,^c Fabian Ganss,^d Pablo F. Siles,^{e,f} Oliver G. Schmidt,^{e,f} Manfred Albrecht,^{d,g} Michael Hietschold,^b Mario Ruben,^{c,h} Dietrich R.T. Zahn,^a and Georgeta Salvan^{*a}

^aSemiconductor Physics, Technische Universität Chemnitz, 09107 Chemnitz, Germany. Email: <u>salvan@physik.tu-</u> <u>chemnitz.de</u>; Fax: +49 371 531 833137; Tel: +49 371 531 33137

^bSolid Surfaces Analysis Group, Technische Universität Chemnitz, 09107 Chemnitz, Germany

^cInstitute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany

^dSurface and Interface Physics, Technische Universität Chemnitz, 09107 Chemnitz, Germany

^eMaterial Systems for Nanoelectronics, Technische Universität Chemnitz, 09107 Chemnitz, Germany

¹Institute for Integrative Nanosciences, IFW Dresden, 01069 Dresden, Germany

^gLehrstuhl für Experimentalphysik IV, Universität Augsburg, 86159 Augsburg, Germany

^hUniversité de Strasbourg, Institute de Physique et de Chimie des Matériaux de Strasbourg, 67034 Strasbourg Cedex 2, France

¹Present address: Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, United Kingdom

Fig. S1. Maldi-ToF spectrum of $[TbPc_2]^0$ complex shows the parent ions at m/z = 1183. An expanded view of the peak shows an isotope distribution, which is in very good agreement with theoretical predictions.

Fig. S2. The UV/vis/nIR absorption spectrum is similar to the neutral green form of $[LnPc_2]^0$ spectra [D. Markovitsi, T.-H. Tran-Thi, *Chem. Phys. Letters*, *1987*, *137*, 107-112] with the most intense band - the Q-band - at 672 nm. In the near-infrared region two main bands are observed at about 906 nm and 1300-1800 nm. The shorter wavelength band is related to the radical part and attributed to the $1e_g(\pi) \rightarrow a_{1u}(\pi)$ transition; the lower-energy band is assigned to an intramolecular charge transfer (CTI). Those signals are the fingerprints of the neutral species $[LnPc_2]^0$ and, thus, confirm their nature. All the near-infrared bands disappear upon reduction by hydrazine hydrate (1% vv).

Fig. S3. MOKE spectrum of a blank piece of Si(111) covered with native oxide.

Fig. S4. VASE (Variable Angle Spectroscopic Ellipsometry) spectra of the 62 nm $TbPc_2$ on SiO₂/Si sample. The green dashed lines belong to the experimental data and the red solid lines represent the model fit. The model consists of eleven Gaussian oscillators and a uniaxial anisotropy of the optical properties is assumed.

Fig. S5. Diagonal elements of the dielectric tensor in the plane (left) and the calculated offdiagonal elements (right) of $TbPc_2$ thin films on SiO_2/Si with different thicknesses. The values of the components of the dielectric tensor are normalized to a magnetic field of 1 T.

Fig. S6. Out-of-plane components of the dielectric tensor of five TbPc₂ films on SiO₂/Si.

Fig. S7. Complex refractive index of TbPc₂ films on PTCDA/SiO₂/Si.

Fig. S8. Complex refractive index of TbPc₂ films on Co/SiO₂/Si.

Table S1. Summary of the obtained Landé factors and ligand field (LF) parameters from fitting of the hysteresis loops at 1.8 K using the Hamiltonians below. For comparison the parameters for simulation from Ishikawa *et al.* [Ishikawa, N.; Sugita, M.; Okubo, T.; Tanaka, N.; Iino, T.; Kaizu, Y. *Inorg. Chem.*, 2003, **42**, 2440-2446] are shown. The Stevens coefficients used for the Tb³⁺ ion are $\alpha = -1/99$, $\beta = 2/16335$ and $\gamma = -1/891891$. [Stevens, K.W.H. *Proc. Phys. Soc. A*, 1952, **65**, 209] For having reasonable LF parameters it was necessary to include the Landé factor as a free parameter in the fitting procedure. Remarkable are the much higher LF parameters in the TbPc₂ film on silicon compared to the powder measurement and the simulation. This might be related to lower inter-molecular interaction in the film, compared to the powder.

$$\hat{H}_{TbPc2} = \hat{H}_{Zeeman} + \hat{H}_{lf}$$
$$\hat{H}_{Zeeman} = g_1 \mu_0 \mu_B \boldsymbol{J} \cdot \boldsymbol{H}$$

 $\widehat{H}_{lf} = A_2^0 < r^2 > \alpha O_2^0 + A_4^0 < r^4 > \beta O_4^0 + A_6^0 < r^6 > \gamma O_6^0$

	Simulation	43 nm TbPc₂/Si (Fit)	TbPc ₂ Powder (Fit)	37 nm TbPc ₂ /PTCDA (Fit)
g_J	1.50	1.58	1.40	0.86
A_2^0 / cm $^{-1}$	415	849	153	849
A_4^0 / cm $^{-1}$	-230	175	59	175
A_6^0 / cm $^{-1}$	35	49	101	49