Electronic Supplementary Information *for*

Direct Microcontact Printing Induced Supramolecular Interaction for Creating Shape-tunable Patterned Polymer Surfaces

Meiwen Peng,^{a,b,†} Peng Xiao,^{b,†} Youju Huang,^{*b} Mujin Cai,^a Yanshan Hou,^b Jiaming Chen,^b Zhenzhong Liu,^b Zhidong Xiao,^{*a} and Tao Chen^{*b}

^aDepartment of Chemistry, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, China. *E-mail: zdxiao@mail.hzau.edu.cn*

^bDivision of Polymer and Composite Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, 1219 Zhongguan West Road, Ningbo 315201, China.

E-mail: tao.chen@nimte.ac.cn E-mail: yjhuang@nimte.ac.cn

[†]*These authors contribute equally to this work.*

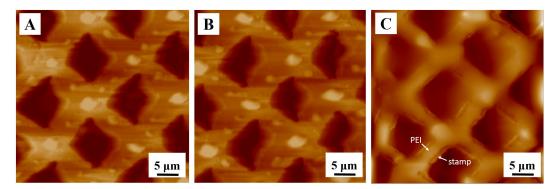


Figure S1. Tapping mode AFM images (40 μ m × 40 μ m) of stamp before microcontact printing with ink Mw of 600 (A), 1800 (B) and 10000 (C), respectively. The ink concentration is 10 mg/mL.

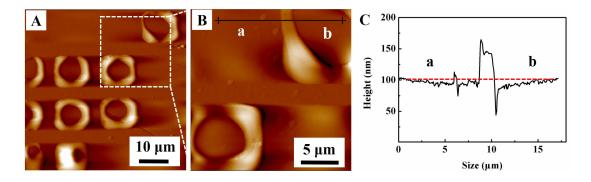


Figure S2. Tapping mode AFM images (A, B) and corresponding cross-sectional profile (C) show there are no polymer films in the center of rings. The height of naked

silicon wafer (a) is consistent with center area of rings (b).