Spectroscopic and nonlinear optical properties of the four

positional isomers of 4α -(4-tert-butylphenoxy)phthalocyanine

Grace N. Ngubeni^a, Jonathan Britton^a, John Mack^a, Edward New^b, Ian Hancox^b, Marx Walker^{b,c}, Tebello

Nyokong^a, Tim S. Jones^b, Samson Khene^{a*}

Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa

E-mail: <u>s.khene@ru.ac.za</u>

Table of contents

1.0 Calculated electronic absorption spectra

Table S1. TD-DFT spectra of the B3LYP optimized geometries of the four positional isomers of the $H_2(OH)_4Pc$ model compound calculated with the B3LYP functional and 6-31G(d) basis sets.

						C_{2v}	
Band ^a	# ^b		Calc	c	E	xp ^d	Wavefunction= ^e
	1						Ground state
Q	2	15.8	632	(0.41)	13.9	714	93% $\mathbf{a} \rightarrow \mathbf{-a}$; 4% $\mathbf{s} \rightarrow \mathbf{-s}$; 3% H–6 (2 a_{2u}) $\rightarrow \mathbf{-s}$;
Q	3	16.0	626	(0.47)	14.6	683	96% $\mathbf{a} \rightarrow \mathbf{-s}$; 3% H–6 (2 a_{2u}) $\rightarrow \mathbf{-a}$; 2% $\mathbf{s} \rightarrow \mathbf{-a}$;
B1	9	25.8	388	(0.14)	25.0	~400	46% s \rightarrow -s; 24% H–3 (1e _g) \rightarrow -a;
B1	15	27.5	364	(0.01)	23.0	100	74% s \rightarrow -a;
B2	17	29.0	345	(0.26)	•••	250	38% H–8 (2a _{1u}) \rightarrow -a; 38% H–6 (2a _{2u}) \rightarrow -s;
B2	18	29.2	342	(0.15)	28.6	~350	38% H–8 (2 a_{1u}) \rightarrow -s; 36% H–6 (2 a_{2u}) \rightarrow -s;
						C _{4h}	
Band ^a	# ^b	Calc ^c		Exp ^d		Wavefunction= ^e	
	1						Ground state
Q	2	15.8	632	(0.42)	13.9	719	61% a \rightarrow -a; 33% a \rightarrow -s; 3% s \rightarrow -s;
Q	3	16.0	624	(0.47)	14.6	689	63% a \rightarrow -s; 32% a \rightarrow -a;
B1	9	25.9	386	(0.20)	25.0	~400	70% s \rightarrow -s; 24% H–2 (1b _{1u}) \rightarrow -a;
B1	15	27.5	364	(0.01)	20.0	100	77% s \rightarrow -a;
B2	17	29.0	344	(0.27)	28.6	~350	53% H–7 (2 a_{1u}) \rightarrow -a; 41% H–6 (2 a_{2u}) \rightarrow -s;
B2	18	29.3	342	(0.11)	_0.0	223	56% H–7 (2 a_{1u}) \rightarrow -s; 39% H–6 (2 a_{2u}) \rightarrow -s;

						Cs	
Band ^a	# ^b	Calc ^c			Exp ^d		Wavefunction= ^e
	1						Ground state
Q	2	15.8	632	(0.41)	13.9	718	92% $\mathbf{a} \rightarrow \mathbf{-a}$; 4% $\mathbf{s} \rightarrow \mathbf{-s}$; 3% H–6 (2 a_{2u}) $\rightarrow \mathbf{-s}$;
Q	3	16.0	626	(0.48)	14.5	688	95% $\mathbf{a} \rightarrow \mathbf{-s}$; 3% H–6 (2 a_{2u}) $\rightarrow \mathbf{-a}$; 2% $\mathbf{s} \rightarrow \mathbf{-a}$;
B1	9	25.9	386	(0.19)	25.0	~400	68% s → -s;
B1	15	27.4	364	(0.02)	25.0		73% s \rightarrow -a;
B2	17	29.0	345	(0.24)	28.6	~350	53% H–8 (2 a_{1u}) → -a; 40% H–6 (2 a_{2u}) → -s;
B2	18	29.2	342	(0.10)			56% H–8 (2 a_{1u}) \rightarrow -s; 38% H–6 (2 a_{2u}) \rightarrow -s;
						D _{2h}	
		Calc ^c					
Band ^a	# ^b		Calc	c	E	xp ^d	Wavefunction= ^e
Band ^a	# ^b		Calc	c 	E:	xp ^d	Wavefunction= ^e Ground state
Band ^a Q	# ^b 1 2		Calc 634	c (0.40)	E 14.0	xp^d 715	Wavefunction=Ground state79% a \rightarrow -a; 15% a \rightarrow -s; 4% s \rightarrow -s; 2% H-6 $(2a_{2u}) \rightarrow$ -s;
Band ^a Q Q	# ^b 1 2 3	 15.8 16.0	Calc 634 626	c (0.40) (0.49)	E 14.0 14.5	xp ^d 715 687	Wavefunction= ^e Ground state 79% a \rightarrow -a; 15% a \rightarrow -s; 4% s \rightarrow -s; 2% H–6 (2a _{2u}) \rightarrow -s; 81% a \rightarrow -s; 15% a \rightarrow -a; 2% s \rightarrow -a; 2% H–6 (2a _{2u}) \rightarrow -a;
Band ^a Q Q B1	# ^b 1 2 3 9	 15.8 16.0 25.8	Calc 634 626 388	c (0.40) (0.49) (0.23)	E 14.0 14.5	xp ^d 715 687	Wavefunction= ^e Ground state 79% $\mathbf{a} \rightarrow -\mathbf{a}$; 15% $\mathbf{a} \rightarrow -\mathbf{s}$; 4% $\mathbf{s} \rightarrow -\mathbf{s}$; 2% H–6 $(2a_{2u}) \rightarrow -\mathbf{s}$; 81% $\mathbf{a} \rightarrow -\mathbf{s}$; 15% $\mathbf{a} \rightarrow -\mathbf{a}$; 2% $\mathbf{s} \rightarrow -\mathbf{a}$; 2% H–6 $(2a_{2u}) \rightarrow -\mathbf{s}$; 64% $\mathbf{s} \rightarrow -\mathbf{s}$; 13% H–2 (1b _{1u}) $\rightarrow -\mathbf{a}$;
Band ^a Q Q B1 B1	# ^b 1 2 3 9 15	 15.8 16.0 25.8 27.3	Calc 634 626 388 366	c (0.40) (0.49) (0.23) (0.01)	E 14.0 14.5 25.0	xp ^d 715 687 ~400	Wavefunction= ^e Ground state 79% a \rightarrow -a; 15% a \rightarrow -s; 4% s \rightarrow -s; 2% H–6 (2a _{2u}) \rightarrow -s; 81% a \rightarrow -s; 15% a \rightarrow -a; 2% s \rightarrow -a; 2% H–6 (2a _{2u}) \rightarrow -a; 64% s \rightarrow -s; 13% H–2 (1b _{1u}) \rightarrow -a; 78% s \rightarrow -a;
Band ^a Q Q B1 B1 B2	# ^b 1 2 3 9 15 17	 15.8 16.0 25.8 27.3 29.0	Calc 634 626 388 366 345	c (0.40) (0.49) (0.23) (0.01) (0.24)	E 14.0 14.5 25.0	xp ^d 715 687 ~400	Wavefunction= ^e Ground state 79% a \rightarrow -a; 15% a \rightarrow -s; 4% s \rightarrow -s; 2% H–6 (2a _{2u}) \rightarrow -s; 81% a \rightarrow -s; 15% a \rightarrow -a; 2% s \rightarrow -a; 2% H–6 (2a _{2u}) \rightarrow -a; 64% s \rightarrow -s; 13% H–2 (1b _{1u}) \rightarrow -a; 78% s \rightarrow -a; 54% H–7 (2a _{1u}) \rightarrow -a; 37% H–6 (2a _{2u}) \rightarrow -s;

a – Band assignment described in the text. b – The number of the state assigned in terms of ascending energy within the TD-DFT calculation. c – Calculated band energies (10^3 .cm⁻¹), wavelengths (nm) and oscillator strengths in parentheses (f). d – Observed energies (10^3 .cm⁻¹) and wavelengths (nm) in Figures 8-10. e – The wave functions based on the eigenvectors predicted by TD-DFT. One-electron transitions associated with Michl's perimeter model are highlighted in bold. H in H–n refers to the HOMO. When this nomenclature is used the symmetry label for the corresponding MO in the π -systems of D_{2h} MPc complexes is provided in parentheses where applicable.

2.0 Uv/vis, excitation and Emission spectra

Figure 1: UV-visible absorption, excitation and fluorescence emission spectra of isomers C_s (A), C_{4h} (B), D_{2h} (C) and C_{2v} (D)($\lambda_{ex} = 670 \text{ } nm$) in DCM.

3.0 Time correlated single photon counting (TCSPC)

Figure 2: Fluorescence decay curve for the $C_{\rm s}$ isomer in DCM with residuals ($\lambda_{\rm ex}$ = 670 nm).