SUPPORTING INFORMATION

Non-stoichiometric Compositions Arising from Synergistic Electronic and Size Effects. Syntheses, Crystal Chemistry and Electronic Properties of $A_{14}Cd_{1+x}Pn_{11}$ Compounds ($0 \le x \le 0.30$; A = Sr, Eu; Pn = As, Sb)

Julien P. A. Makongo, Gregory M. Darone, Sheng-Qing Xia, and Svilen Bobev^a

Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States

Corresponding Author

E-mail: bobev@udel.edu. Phone: (302) 831-8720. Fax: (302) 831-6335.

$(A - 51, Eu anu 1 n - AS, 50), U_{12} - U_{13} - U_{23} - 0$									
Atom	Site	U_{11}	U_{22}	U_{33}					
$Sr_{14}Cd_{1.06(1)}As_{11}$									
Sr1	32g	0.0239(3)	0.0226(3)	0.0245(3)					
Sr2	32g	0.0205(3)	0.0286(4)	0.0293(3)					
Sr3	16e	0.0188(4)	0.0171(4)	0.0223(4)					
Sr4	32g	0.0397(4)	0.0186(3)	0.0268(3)					
Cd1	8 <i>a</i>	0.0198(3)	0.0198(3)	0.0193(4)					
As1	16 <i>f</i>	0.0223(3)	0.0223(3)	0.0243(5)					
As2	32g	0.0172(3)	0.0169(3)	0.0224(3)					
As3A	32g	0.0305(5)	0.017(4)	0.0222(4)					
As3B	32g	0.0305(5)	0.017(4)	0.0222(4)					
As4	16 <i>f</i>	0.0159(6)	0.0159(6)	0.0201(8)					
Eu ₁₄ CdAs ₁₁									
Eu1	32g	0.0113(2)	0.011(2)	0.0122(2)					
Eu2	32g	0.01(2)	0.0121(2)	0.0166(2)					
Eu3	16e	0.0105(3)	0.0095(3)	0.0136(3)					
Eu4	32g	0.0217(2)	0.0094(2)	0.0123(2)					
Cd1	8a	0.0105(3)	0.0105(3)	0.0105(5)					
As1	16 <i>f</i>	0.0134(4)	0.0134(4)	0.0113(5)					
As2	32g	0.0091(4)	0.0095(4)	0.0154(4)					
As3	32g	0.0167(4)	0.0121(4)	0.0119(4)					
As4	16 <u>f</u>	0.0112(10)	0.0112(10)	0.0087(8)					
	-	Sr ₁₄ Cd	1.30(1)Sb ₁₁						
Sr1	32g	0.0178(3)	0.0203(3)	0.0181(3)					
Sr2	32g	0.0182(3)	0.0322(4)	0.0245(3)					
Sr3	16e	0.0121(4)	0.0132(4)	0.0134(4)					
Sr4	32g	0.0414(4)	0.0147(3)	0.0145(3)					
Cd1	8 <i>a</i>	0.0165(4)	0.0165(4)	0.0142(5)					
Sb1	16 <i>f</i>	0.0137(2)	0.0137(2)	0.0142(3)					
Sb2	32g	0.0141(2)	0.0127(2)	0.0188(2)					
Sb3	32g	0.0265(2)	0.0142(2)	0.0187(2)					
Sb4	$8b^{-}$	0.0429(4)	0.0429(4)	0.0148(4)					
Eu ₁₄ Cd _{1.27(1)} Sb ₁₁									
Eu1	32g	0.0161(3)	0.0173(3)	0.0188(3)					
Eu2	32g	0.0166(3)	0.0282(3)	0.0261(3)					
Eu3	16e	0.0119(3)	0.0127(3)	0.0134(3)					
Eu4	32g	0.0396(4)	0.0139(3)	0.0154(3)					
Cd1	8 <i>a</i>	0.0147(4)	0.0147(4)	0.016(7)					
Sb1	16 <i>f</i>	0.0124(3)	0.0124(3)	0.015(5)					
Sb2	32g	0.0125(3)	0.0124(3)	0.0194(3)					
Sb3	32g	0.0243(4)	0.0133(3)	0.0172(3)					
Sb4	8b	0.0314(6)	0.0314(6)	0.0183(7					

Table S1. Anisotropic Displacement Parameters (Å²) for A_{14} Cd Pn_{11} and (A =Sr, Eu and Pn =As, Sb); $U_{12} = U_{13} = U_{23} = 0$

Empirical formula	$Sr_{14}Cd_{1.4(1)}Sb_{11}$				
Formula weight	2726.8				
Temperature	120(2)K				
Radiation, λ	MoKα, 0.71073 Å				
Space group, Z	<i>I</i> 4 ₁ / <i>acd</i> (No 142), 8				
a (Å)	17.645(2)				
b (Å)	17.645(2)				
<i>c</i> (Å)	23.117(3)				
$V(Å^3)$	7197(1)				
$\rho_{\rm cal} ({\rm g/cm}^3)$	5.03				
$\mu (\mathrm{cm}^{-1})$	294.6				
Goodness-of-fit on F^2	0.98				
$R_1 \left(I > 2\sigma_{\rm I}\right)^a$	0.037				
$wR_2 (I > 2\sigma_1)^a$	0.081				
Largest diff. peak and hole $(e^{-}/Å^{-3})$	3.21, -3.07				
${}^{a}R_{1} = \Sigma F_{o} - F_{c} / \Sigma F_{o} ; wR_{2} = [\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}]]^{1/2}$, where					
$w = 1/[\sigma^2 F_o^2 + (0.03P)^2]$ and $P = (F_o^2 + 2F_c^2)/3$.					

Table S2. Selected Crystal Data and Structure Refinement Parameters for $Sr_{14}Cd_{1.4(1)}Sb_{11}$ and synthesized by a solid state reaction in welded Nb tube.

Table S3. Atomic Coordinates and Equivalent Isotropic Displacement Parameters (U_{eq}^{a}) for $Sr_{14}Cd_{1.4(1)}Sb_{11}$

Atom	Site	x	У	Ζ	Occupancy	$U_{\rm eq}({\rm \AA}^2)$			
$\overline{\mathrm{Sr}_{14}\mathrm{Cd}_{1,4(1)}\mathrm{Sb}_{11}}$									
Sr1	32g	0.04193(6)	0.07454(6)	0.1724(4)	1	0.0168(3)			
Sr2	32g	0.02429(6)	0.37531(7)	0.00144(5)	1	0.0254(3)			
Sr3	16e	0.35302(8)	0	1/4	1	0.0096(3)			
Sr4	32g	0.3417(7)	0.07319(6)	0.09427(4)	1	0.0214(3)			
Cd1	8 <i>a</i>	0	1/4	3/8	1	0.0125(3)			
$\mathrm{Cd2}^{b}$	32g	0.473(4)	0.0054(4)	0.077(3)	0.10(1)	0.007(2)			
Sb1	16 <i>f</i>	0.13471(3)	0.38471(4)	1/8	1	0.0108(2)			
Sb2	32g	0.358(4)	0.25637(4)	0.06154(3)	1	0.0121(2)			
Sb3	32g	0.12876(4)	0.02817(4)	0.04513(3)	1	0.0167(2)			
Sb4	8 <i>b</i>	0	1/4	1/8	1	0.0291(7)			

 $\overline{{}^{a}U_{eq}}$ is defined as one-third of the trace of the orthogonalized U_{ij} tensor. ^b Refined isotropically.

Figure S1. Two-dimensional (2D) contour plot of the observed Fourier electron density (3–6 $e^{-}/Å^{3}$) from the refined atomic positions showing a cigar-shaped like thermal ellipsoid for the central position (Sb4) of the linear hypervalent $[Sb_3]^{7-}$ anion (scaled in 5 × 5 Å), and a spherical shaped-like thermal ellipsoid for Sb3 (scaled in 1.4 × 1.4 Å) in the crystal structure of $Sr_{14}Cd_{1.30}Sb_{11}$ (top) and $Eu_{14}Cd_{1.27}Sb_{11}$ (bottom), respectively.

Figure S2. 2D contour plot of the observed Fourier electron density $(3-6 \text{ e}^-/\text{Å}^3)$ from the refined atomic positions showing a cigar-shaped like thermal ellipsoid for the central position (As4) of the linear hypervalent $[As_3]^{7-}$ anion (scaled in 5 × 5 Å), and a spherical shaped-like thermal ellipsoid for As3 (scaled in 1.4 × 1.4 Å) in the crystal structure of Sr₁₄Cd_{1.06}As₁₁ (top) and Eu₁₄CdAs₁₁ (bottom), respectively.

Figure S3. First coordination spheres for the cations in the "14-1-11" structure. Shown are the polyhedra for the Sr atoms in the structure of $Sr_{14}Cd_{1.06}As_{11}$.

Figure S4. (A) First coordination sphere polyhedra of the Ca atoms in the crystal structure of Ca₉Cd_{4+x}Bi₉. The data used for the drawing are from S. Q. Xia and S. Bobev, *J. Am. Chem. Soc.*, 2007, **129**, 10011. (B) [CdBi₄] tetrahedra sharing face and edges with distorted [CaBi₆] octahedra and [CaBi₅] square pyramids.

Figure S5. (A) Alternative description of the crystal structure of $Ca_9Cd_{4+x}Bi_9$, viewed as space filling packing of distorted [CaBi₆] octahedra and [CaBi₅] square pyramids. The Cd atoms occupy the interstitial sites forming a network of distorted [CdBi₄] tetrahedra. Each [CdBi₄] tetrahedron shares faces and edges with distorted [CaBi₆] octahedra and [CaBi₅] square pyramids generating surprising robust Cd–Ca bonds. The Ca atoms highlighted in this figure are solely used to fill the space since they are not atoms of the first coordination sphere of Cd3 polyhedron. Note that the remaining Cd and Ca polyhedra and their connectivity are not shown for the sake of clarity. (B) Highlight of the remaining residual space in the crystal structure. This empty space offers more structural flexibility to accommodate diverse cation species with perhaps a new structural topology or stuffed variant. (C) Covalent polyanionic ribbon [Cd₄Bi₉]^{19–} emphasizing the contribution of the electropositive Ca²⁺ unjustly considered as space-filler/spectator. (D) Network of distorted [CdBi₄] tetrahedra.