Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2015

Journal of

Materials Chemistry C

RSCPublishing

PAPER

Dielectric and optical anisotropy enhanced by 1,3-dioxolane terminal substitution on tolane-liquid crystals

Ran Chen,^a Yi Jiang,^b Jian Li,^c Zhongwei An,^{*a,c} Xinbing Chen^a and Pei Chen^a

 ^a Key Laboratory of Applied Surface and Colloid Chemistry, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China. E-mail: <u>gmecazw@163.com</u> (Z. An).
^b Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
^c Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.

Electronic supplementary information

Table of contents

1.	General	S 1
2.	Compound structure characterization	S2
3.	Table S1 and Fig. S6	S13
4.	Geometric data of molecular 2BF2 and 2TF2	S15
5.	Vuks equation	S17
6.	The simulated molecular structure of 2BF2V	S18
7.	Compositions of mixtures SNULC-P01 and SNULC-P02	S19

1. General

The ¹H NMR and ¹³C NMR spectra were recorded on a spectrometer operating at 300 and 75 MHz. Full geometry optimizations have been carried out without imposing any constraints using the Gaussian 09 program package. Spin-restricted DFT calculations were carried out in the framework of the generalized gradient approximation (GGA) using B3LYP exchange-correlation functional and the 6-31G (d, p) basis set.

2. Compound structure characterization

2TF2: The yield was 48% of white crystals.

¹H NMR (300 MHz, CDCl₃) δ (ppm): H_(10, 11, 13) 7.33 (dd, J = 17.7, 7.8 Hz, 3H), H_(9, 12) 7.05 (d, J = 7.9 Hz, 2H), H_(14, 15) 6.86 (d, J = 8.0 Hz, 2H), H₁₈ 4.86 - 4.71 (m, 1H), H₁₉ 3.99 - 3.62 (m, 4H), H_(8, 16) 2.78 - 2.42 (m, 4H), H₁₇ 1.99 - 1.80 (m, 2H), H_(4e, 5e) 1.77 - 1.53 (m, 4H), H₇ 1.48 - 1.29 (m, 2H), H_(2, 3, 6) 1.21 - 0.95 (m, 4H), H_(1, 4a, 5a) 0.89 - 0.67 (m, 7H).

¹³C NMR (75 MHz, CDCl₃) δ (ppm): C₂₂ 164.4 160.5, C₉ 144.5, C₂₀ 144.0, C₁₈ 133.2, C_(11, 13) 131.6, C_(10, 14) 128.4, C₁₉ 124.1, C₁₂ 120.2, C₂₁ 115.6, C₁₇ 109.7, C₂₅ 103.5, C₁₆ 94.4, C₁₅ 82.2, C₂₆ 65.0, C₆ 39.6, C₃ 39.1, C₈ 37.5, C₂₄ 35.0, C₄ 33.3, C₅ 33.3, C₇ 32.8, C₂₃ 30.0, C₂ 30.0, C₁ 11.6.

EI-MS *m/z* (rel. int.): 434(M⁺, 26), 372(15), 309(18), 207(100), 100(73), 73(78). IR (KBr, pellet, cm⁻¹): 2955, 2912, 2848, 2205, 1907, 1605, 1515, 1438, 1217, 1130, 1038, 886, 812. Elemental analysis: Calc. for C₂₉H₃₅FO₂: C 80.15, H 8.12; Found: C 79.92, H 8.21.

Fig. S2. ¹H (top) and ¹³C (bottom) NMR spectra of 3TF2 recorded in CDCl₃.

3TF2: The yield was 50% of white crystals.

¹H NMR (300 MHz, CDCl₃) δ (ppm): H_(11, 12, 14) 7.40 (dd, J = 18.0, 7.8 Hz, 3H), H_(10, 13) 7.13 (d, J = 7.8 Hz, 2H), H_(15, 16) 6.94 (d, J = 8.6 Hz, 2H), H₁₉ 5.04 – 4.59 (m, 1H), H₂₀ 4.04 – 3.72 (m, 4H), H_(9, 17) 2.86 – 2.43 (m, 4H), H₁₈ 2.09 – 1.87 (m, 2H), H_(5e, 6e) 1.84 – 1.60 (m, 4H), H₈ 1.56 – 1.42 (m, 2H), H_(2, 3, 4, 7) 1.36 – 1.08 (m, 6H), H_(1, 5a, 6a) 0.95 – 0.76 (m, 7H).

¹³C NMR (75 MHz, CDCl₃) δ (ppm): C₂₃ 164.2 160.9, C₁₀ 144.6, C₂₁ 144.0, C₁₉ 133.2, C_(12, 14) 131.6, C_(11, 15) 128.4, C₂₀ 124.1, C₁₃ 120.2, C₂₂ 115.3, C₁₈ 109.6, C₂₆ 103.5, C₁₇ 94.2, C₁₆ 82.2, C₂₇ 65.0, C₇ 39.8, C₄ 39.1, C₉ 37.5, C₃ 37.5, C₂₅ 35.0, C₅ 33.3, C₆ 33.3, C₈ 33.3, C₂₄ 29.9, C₂ 20.1, C₁ 14.5.

EI-MS m/z (rel. int.): 448(M⁺, 46), 309(28), 222(28), 207(40), 100(100). IR (KBr, pellet, cm⁻¹): 2958, 2906, 2848, 2211, 1903, 1613, 1517, 1440, 1221, 1131, 1042, 887, 816. Elemental analysis: Calc. for C₃₀H₃₇FO₂: C 80.32, H 8.31; Found: C 80.26, H 8.52.

Fig. S3. ¹H (top) and ¹³C (bottom) NMR spectra of 4TF2 recorded in CDCl₃.

4TF2: The yield was 45% of white crystals.

¹H NMR (300 MHz, CDCl₃) δ (ppm): H_(12, 13, 15) 7.40 (dd, J = 18.1, 7.8 Hz, 3H), H_(11, 14) 7.13 (d, J = 8.0 Hz, 2H), H_(16, 17) 6.94 (d, J = 9.2 Hz, 2H), H₂₀ 4.93 – 4.77 (m, 1H), H₂₁ 4.00 – 3.72 (m, 4H), H_(10, 18) 2.78 – 2.49 (m, 4H), H₁₉ 2.03 – 1.86 (m, 2H), H_(6e, 7e) 1.83 – 1.60 (m, 4H), H₉ 1.54 – 1.36 (m, 2H), H_(2, 3, 4, 5, 8) 1.34 – 1.04 (m, 8H), H_(1, 6a, 7a) 0.97 – 0.73 (m, 7H).

¹³C NMR (75 MHz, CDCl₃) δ (ppm): C₂₄ 164.2, 160.9, C₁₁ 144.6, C₂₂ 144.0, C₂₀ 133.2, C_(13, 15) 131.6, C_(12, 16) 128.4, C₂₁ 124.0, C₁₄ 120.2, C₂₃ 115.6, C₁₉ 109.7, C₂₇ 103.5, C₁₈ 94.2, C₁₇ 82.2, C₂₈ 65.0, C₈ 39.1, C₅ 37.8, C₁₀ 37.5, C₄ 37.2, C₂₆ 35.0, C₆ 33.3, C₇ 33.3, C₉ 33.3, C₂₅ 29.9, C₃ 29.3, C₂ 23.1, C₁ 14.2.

EI-MS *m/z* (rel. int.): 462(M⁺, 50), 309(38), 235(30), 100(100), 73(70). IR (KBr, pellet, cm⁻¹): 2962, 2916, 2848, 2208, 1913, 1617, 1517, 1436, 1217, 1135, 1048, 880, 812. Elemental analysis: Calc. for C₃₁H₃₉FO₂: C 80.48, H 8.50; Found: C 80.28, H 8.66.

Fig. S4. ¹H (top) and ¹³C (bottom) NMR spectra of 5TF2 recorded in CDCl₃.

5TF2: The yield was 52% of white crystals.

¹H NMR (300 MHz, CDCl₃) δ (ppm): H_(13, 14, 16) 7.40 (dd, J = 17.7, 7.7 Hz, 3H), H_(12, 15) 7.13 (d, J = 7.9 Hz, 2H), H_(17, 18) 6.94 (d, J = 9.0 Hz, 2H), H₂₁ 4.92 - 4.76 (m, 1H), H₂₂ 4.01 - 3.71 (m, 4H), H_(11, 19) 2.81 - 2.49 (m, 4H), H₂₀ 2.03 - 1.85 (m, 2H), H_(7e, 8e) 1.82 - 1.59 (m, 4H), H₁₀ 1.55 - 1.37 (m, 2H), H_(2, 3, 4, 5, 6, 9) 1.35 - 1.02 (m, 10H), H_(1, 7a, 8a) 1.00 - 0.70 (m, 7H).

 $^{13}C NMR (75 MHz, CDCl_3) \delta (ppm): C_{25} 164.2, 160.9, C_{12} 144.5, C_{23} 144.0, C_{21} 133.2, C_{(14, 16)} 131.6, C_{(13, 17)} 128.4, C_{22} 124.0, C_{15} 120.2, C_{24} 115.6, C_{20} 109.7, C_{28} 103.5, C_{19} 94.1, C_{18} 82.2, C_{29} 65.0, C_{9} 39.1, C_{6} 37.9, C_{11} 37.5, C_{5} 37.5, C_{27} 35.0, C_{7} 33.3, C_{8} 33.3, C_{10} 33.3, C_{3} 32.3, C_{26} 29.9, C_{4} 26.7, C_{2} 22.8, C_{1} 14.2.$

EI-MS *m/z* (rel. int.): 476(M⁺, 55), 309(40), 235(28), 100(100), 73(62).

IR (KBr, pellet, cm⁻¹): 2960, 2909, 2848, 2207, 1903, 1613, 1513, 1440, 1217, 1128, 1049, 886, 816.

Elemental analysis: Calc. for $C_{32}H_{41}FO_2$: C 80.63, H 8.67; Found: C 80.33, H 8.71.

Fig. S5. ¹H (top) and ¹³C (bottom) NMR spectra of **3T** recorded in CDCl₃.

3T: The yield was 55% of white crystals.

¹H NMR (300 MHz, CDCl₃) δ (ppm): H₁₁ 7.42 (dd, J = 7.7, 3.9 Hz, 4H), H₁₀ 7.14 (dd, J = 12.1, 8.1 Hz, 4H), H₁₄ 5.01 – 4.79 (m, 1H), H₁₅ 4.09 – 3.75 (m, 4H), H₁₂ 2.87 – 2.67 (m, 2H), H₉ 2.67 – 2.47 (m, 2H), H₁₃ 2.08 – 1.89 (m, 2H), H_(5e, 6e) 1.84 – 1.62 (m, 4H), H₈ 1.55 – 1.38 (m, 2H), H_(2, 3, 4, 7) 1.36 – 1.08 (m, 6H), H_(1, 5a, 6a) 0.99 – 0.79 (m, 7H).

 $^{13}C NMR (75 MHz, CDCl_3) \delta (ppm): C_{10} 143.6, C_{19} 141.9, C_{17} 131.6, C_{12} 131.5, C_{11} 128.4, C_{18} 128.4, C_{16} 121.1, C_{13} 120.5, C_{22} 103.7, C_{15} 89.2, C_{14} 88.8, C_{23} 65.0, C_{7} 39.8, C_{4} 39.1, C_{9} 37.5, C_{3} 37.5, C_{21} 35.3, C_{5} 33.3, C_{6} 33.3, C_{8} 33.3, C_{20} 30.1, C_{2} 20.1, C_{1} 14.5.$

EI-MS *m*/*z* (rel. int.): 430(M⁺, 57), 217(28), 204(30), 100(100), 73(47).

IR (KBr, pellet, cm⁻¹): 2951, 2912, 2848, 2115, 1903, 1607, 1510, 1446, 1408, 1131, 1028, 881, 811.

Elemental analysis: Calc. for C₃₀H₃₈O₂: C 83.67, H 8.89; Found: C 83.89, H 9.12.

The characterized data of compounds **nBF1** and **nBF2** are listed below:

2BF1: The yield was 60% of white crystals. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.46 (d, J = 7.1 Hz, 2H), 7.29 (m, 3H), 7.00 - 6.89 (m, 2H), 4.94 - 4.91 (m, 1H), 4.07 - 3.92 (m, 2H), 3.90 - 3.74 (m, 2H), 2.87 - 2.72 (m, 2H), 2.68 - 2.50 (m, 2H), 2.09 - 1.90 (m, 2H), 1.85 - 1.65 (m, 4H), 1.60 - 1.40 (m, 2H), 1.32 - 1.03 (m, 4H), 0.99 - 0.71 (m, 7H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 161.4, 158.1, 144.7, 144.7, 140.8, 133.6, 130.3, 130.3, 129.0, 128.9, 128.5, 126.0, 125.9, 124.3, 124.3, 115.8, 115.5, 103.9, 65.0, 39.6, 39.0, 37.5, 35.5, 33.3, 33.3, 32.8, 30.0, 29.9, 11.6. EI-MS *m/z* (rel. int.): 410(M⁺, 12), 348(19), 198(19), 100(100), 73(60). IR (KBr, pellet, cm⁻¹): 2964, 2919, 2848, 1916, 1568, 1498, 1446, 1409, 1125, 1035, 861, 816.

3BF1: The yield was 62% of white crystals. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.46 (d, J =7.5 Hz, 2H), 7.30 (m, 3H), 7.00 - 6.87 (m, 2H), 4.94 - 4.91 (m, 1H), 4.02-3.99 (m, 2H), 3.91-3.86 (m, 2H), 2.80-2.77 (m, 2H), 2.64-2.61 (m, 2H), 2.04-2.00 (m, 2H), 1.76-1.73 (m, 4H), 1.57-1.51 (m, 2H), 1.30-1.28 (m, 2H), 1.17-1.13 (m, 4H), 0.92-0.85 (m, 7H). ¹³C NMR (75MHz, CDCl₃) δ (ppm): 161.3, 158.0, 144.7, 144.7, 140.8, 133.5, 130.3, 129.0, 128.9, 128.5, 126.0, 125.9, 124.3, 124.3, 115.9, 115.6, 103.8, 65.0, 39.8, 39.0, 37.5, 37.5, 35.4, 33.2, 33.2, 32.8, 29.9, 20.1, 14.6, EI-MS *m/z* (rel. int.): 424(M⁺, 8), 362(16), 198(20), 100(100), 73(61). IR (KBr, pellet, cm⁻¹): 2962, 2912, 2848, 1912, 1564, 1496, 1440, 1412, 1122, 1031, 866, 818.

4BF1: The yield was 58% of white crystals. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.38 (d, *J* = 6.9 Hz, 2H), 7.20 (m, 3H), 6.98 – 6.82 (m, 2H), 4.89 – 4.81 (m, 1H), 3.98 – 3.87 (m, 2H), 3.85 – 3.75 (m, 2H), 2.78 – 2.64 (m, 2H), 2.61 – 2.51 (m, 2H), 2.04 – 1.87 (m, 2H), 1.81 – 1.61 (m, 4H), 1.52 – 1.36 (m, 2H), 1.24 – 1.06 (m, 8H), 0.91 – 0.74 (m, 7H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 161.3, 158.1, 144.7, 144.7, 140.8, 133.6, 130.3, 130.3, 128.9, 128.9, 128.5, 126.0, 125.8, 124.3, 124.3, 115.9, 115.6, 103.8, 65.0, 39.0, 37.8, 37.5, 37.2, 35.4, 33.3, 33.3, 32.9, 29.9, 29.3, 23.1, 14.2. EI-MS *m/z* (rel. int.): 438(M⁺, 7), 376(22), 198(23), 100(100), 73(66). IR (KBr, pellet, cm⁻¹): 2958, 2914, 2846, 1910, 1562, 1494, 1436, 1406, 1117, 1028, 858, 807.

5BF1: The yield was 63% of white crystals.¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.45 (d, J = 7.0 Hz, 2H), 7.28 (m, 3H), 6.98 - 6.92 (m, 2H), 4.95 - 4.84 (m, 1H), 4.02 - 3.93 (m, 2H), 3.87 - 3.77 (m, 2H), 2.88 - 2.72 (m, 2H), 2.68 - 2.54 (m, 2H), 2.09 - 1.93 (m, 2H), 1.88 - 1.66 (m, 4H), 1.59 - 1.40 (m, 2H), 1.43 - 1.06 (m, 10H), 1.03 - 0.77 (m, 7H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 161.4, 158.1, 144.7, 144.7, 140.9, 133.6, 130.3, 130.3, 129.0, 129.0, 128.5, 126.0, 125.9, 124.3, 124.3, 116.0, 115.7, 103.9, 65.0, 39.1, 37.9, 37.5, 37.5, 35.5, 33.3, 33.2, 9.32.3, 29.9, 26.8, 22.8, 14.2. EI-MS *m/z* (rel. int.): 452(M⁺, 8), 390(29), 185(19), 100(100), 73(58). IR (KBr, pellet, cm⁻¹): 2951, 2910, 2848, 1912, 1558, 1488, 1442, 1409, 1115, 1025, 858, 809.

2BF2: The yield was 58% of white crystals. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.33 (d, J = 7.0 Hz, 2H), 7.21 (t, J = 8.1 Hz, 1H), 7.11 (m, 2H), 6.92 - 6.86 (m, 2H), 4.85 - 4.71 (m, 1H), 3.91 - 3.78 (m, 2H), 3.75 - 3.63 (m, 2H), 2.72 - 2.60 (m, 2H), 2.57 - 2.44 (m, 2H), 1.95 - 1.81 (m, 2H), 1.78 - 1.56 (m, 4H), 1.50 - 1.35 (m, 2H), 1.20 - 0.95 (m, 4H), 0.87 - 0.67 (m, 7H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 161.4, 158.2, 143.0, 142.6, 133.1, 130.5, 130.5, 128.8, 128.8, 128.5, 126.6, 126.5, 124.4, 116.1, 115.8, 103.7, 65.0, 39.7, 39.4, 37.7, 35.2, 33.3, 33.2, 32.9, 30.1, 29.6, 11.6. EI-MS *m/z* (rel. int.): 410(M⁺, 33), 324(30), 211(34), 198(31), 100(100), 73(81). IR (KBr, pellet, cm⁻¹): 2964, 2919, 2848, 1916, 1626, 1492, 1440, 1395, 1273, 1131, 1022, 887, 810.

3BF2: The yield was 62% of white crystals. ¹H NMR (600 MHz, CDCl₃) δ (ppm): 7.36 (d, J = 7.5 Hz, 2H), 7.26 (t, J = 8.0 Hz, 1H), 7.16 (m, 2H), 6.96 - 6.91 (m, 2H), 4.92 - 4.79 (m, 1H), 3.97 - 3.86 (m, 2H), 3.85 - 3.74 (m, 2H), 2.74 - 2.63 (m, 2H), 2.62 - 2.50 (m, 2H), 1.99 - 1.87 (m, 2H), 1.76 - 1.63 (m, 4H), 1.49 - 1.42 (m, 2H), 1.26 - 1.20 (m, 2H), 1.17 - 1.04 (m, 4H), 0.89 - 0.77 (m, 7H). ¹³C NMR (151 MHz, CDCl₃) δ (ppm): 160.6, 158.9, 142.9, 142.6, 133.0, 130.5, 130.5, 128.8, 128.8, 128.4, 126.8, 126.6, 124.3, 116.0, 115.9, 103.7, 65.0, 39.8, 39.4, 37.5, 37.5, 35.2, 33.3, 33.1, 29.6, 20.1, 14.5. EI-MS *m/z* (rel. int.): 424(M⁺, 23), 338(25), 211(35), 198(31), 100(100), 73(84). IR (KBr, pellet, cm⁻¹): 2964, 2919, 2848, 1907, 1616, 1489, 1444, 1387, 1270, 1135, 1028, 891, 815.

4BF2: The yield was 60% of white crystals. ¹H NMR (600 MHz, CDCl₃) δ (ppm): 7.37 (d, J = 7.6 Hz, 2H), 7.27 (t, J = 8.0 Hz, 1H), 7.17 (m, 2H), 6.97 - 6.91 (m, 2H), 4.91 - 4.80 (m, 1H), 3.98 - 3.89 (m, 2H), 3.86 - 3.78 (m, 2H), 2.75 - 2.67 (m, 2H), 2.63 - 2.54 (m, 2H), 1.97 - 1.90 (m, 2H), 1.79 - 1.63 (m, 4H), 1.51 - 1.42 (m, 2H), 1.22 - 1.07 (m, 8H), 0.90 - 0.73 (m, 7H). ¹³C NMR (151 MHz, CDCl₃) δ (ppm): 160.6, 159.0, 143.0, 142.6, 133.0, 130.5, 128.8, 128.8, 128.4, 126.6, 126.5, 124.3, 116.0, 115.8, 103.7, 65.0, 39.4, 37.9, 37.5, 37.2, 35.2, 33.3, 33.3, 33.1, 29.6, 29.3, 23.1, 14.2. EI-MS *m/z* (rel. int.): 438(M⁺, 18), 376(19), 211(34), 198(30), 100(100), 73(82). IR (KBr, pellet, cm⁻¹): 2962, 2910, 2845, 1910, 1616, 1487, 1438, 1392, 1268, 1128, 1022, 887, 813.

5BF2: The yield was 61% of white crystals. ¹H NMR (600 MHz, CDCl₃) δ (ppm): 7.48 (d, J = 8.0 Hz, 2H), 7.31 (t, J = 8.1 Hz, 1H), 7.22 (m, 2H), 6.97 - 6.92 (m, 2H), 4.96 - 4.85 (m, 1H), 4.05 - 3.92 (m, 2H), 3.92 - 3.81 (m, 2H), 2.82 - 2.75 (m, 2H), 2.70 - 2.51 (m, 2H), 2.05 - 1.97 (m, 2H), 1.83 - 1.70 (m, 4H), 1.58 - 1.43 (m, 2H), 1.36 - 1.08 (m, 10H), 1.00 - 0.79 (m, 7H). ¹³C NMR (151 MHz, CDCl₃) δ (ppm): 163.6, 162.0, 145.8, 142.0, 138.5, 129.6, 129.5, 128.9, 128.7, 128.4, 126.8, 126.8, 124.0, 115.2, 115.0, 103.8, 65.0, 39.4, 37.9, 37.6, 37.5, 35.4, 33.3, 33.3, 33.0, 32.3, 29.8, 26.7, 22.7, 14.1. EI-MS *m/z* (rel. int.): 452(M⁺, 20), 390(28), 211(33), 207(83), 100(100), 73(97). IR (KBr, pellet, cm⁻¹): 2958, 2919, 2848, 1912, 1622, 1489, 1444, 1387, 1273, 1135, 1017, 890, 810.

3. Table S1 and Fig. S6

Composindo	Transition temperature, °C (enthalpy change, kJ mol ⁻¹)		
Compounds	Heating process	Cooling process	
2TF2	Cr ₁ 73.2 (17.8) Cr ₂ 101.7 (20.1) N 124.9 (1.3) I	l 122.1 (-1.4) N 88.6 (-19.8) Cr	
3TF2	Cr ₁ 83.3 (4.4) Cr ₂ 117.3 (20.0) N 150.6 (1.5) I	l 146.9 (-1.7) N 94.4 (-19.6) Cr	
4TF2	Cr 101.7 (21.9) N 142.8 (1.4) I	l 139.7 (-1.6) N 83.5 (-20.4) Cr	
5TF2	Cr ₁ 83.7 (3.3) Cr ₂ 115.7 (23.4) N 147.3 (1.5) I	l 143.8 (-1.6) N 99.0 (-15.0) Cr	
3Т	Cr 130.8 (15.8) N 160.7 (1.1) I	l 155.5 (-0.9) N 108.0 (-9.4) Cr	
2BF1	Cr 79.0 (0.5) l	l 76.0 (-0.6) Cr	
3BF1	Cr 70.2 (14.1) N 111.8 (1.0) I	l 108.3 (-1.3) N 56.4 (-11.7) Cr	
4BF1	Cr 104.3 (0.8) I	l 100.8 (-0.7) Cr	
5BF1	Cr 68.1 (32.4) N 112.8 (1.1) I	l 110.3 (-1.4) N 46.0 (-14.6) Cr	
2BF2	Cr 71.0 (46.0) I	l 71.4 (-1.3) Cr	
3BF2	Cr 82.5 (18.5) N 113.9 (1.5) I	l 110.5 (-1.7) N 58.3 (-17.1) Cr	
4BF2	Cr 66.7 (12.9) N 97.4 (0.5) I	l 94.9 (-0.7) N 40.0 (-6.6) Cr	
5BF2	Cr 78.1 (21.2) N 110.1 (1.2) I	l 107.1 (-1.3) N 51.5 (-15.2) Cr	

Table S1. Types of phase transition, temperatures and corresponding enthalpies obtained by POM and DSC for compounds **nTF2**, **3T**, **nBF1** and **nBF2**.^{*a*}

^a Cr₁: crystal 1; Cr₂: crystal 2; N: nematic mesophase phase; I: isotropic liquid.

Fig. S6. X-ray scattering diagram (θ - scans over the complete XRD pattern) of **2TF2** obtained at 100 °C on the sample gradually cooled from the isotropic state.

All the nematic phases of target compounds under investigation are evident from the XRD method that was performed for representative compound **2TF2**. As shown in Fig. S6, in the XRD pattern of the nematic phase diffuse wide-angle maxima is observed at d = 0.47 nm, which corresponds to the mean lateral distance between the molecules and indicates fluid liquid crystal phase.^[S1]

[S1] G. Shanker, M. Prehm, M. Nagaraj, J. K. Vij, M. Weyland, A. Eremin and C. Tschierske, ChemPhysChem, 2014, 15, 1323–1335.

4. Geometric data

Optimized geometry for molecular 2BF2

С	4.22429400	-0.17494900	-1.34893100
С	2.83676400	-0.18634700	-1.45790900
С	2.01681500	-0.82079400	-0.50744200
С	2.69089900	-1.44297300	0.55179800
С	4.07280200	-1.44278300	0.68137500
С	4.86853000	-0.80248300	-0.27427100
Н	4.81718900	0.31637400	-2.11569800
Н	2.36524500	0.28427100	-2.31507300
С	0.53772600	-0.80915900	-0.63105400
С	-0.24724100	-1.92949100	-0.30858400
С	-0.12179800	0.33458600	-1.11026800
С	-1.62968200	-1.90211500	-0.46902400
Н	0.23034500	-2.82980100	0.05971200
С	-1.50551200	0.35489400	-1.26707600
Н	0.45476000	1.22427900	-1.34582200
С	-2.28786700	-0.76228500	-0.94997900
Н	-2.21011800	-2.78805100	-0.22193500
Н	-1.98714700	1.25680400	-1.63757600
F	1.97733600	-2.07423200	1.51568800
С	6.86712300	0.49411300	0.60700500
Н	6.44083600	0.53192600	1.61611400
Н	6.54352400	1.39831400	0.08076000
С	-3.79521300	-0.72515100	-1.07703900
Н	-4.07219500	-0.03357900	-1.88044200
Н	-4 16268700	-1 71555500	-1 37590700
C	-4 49136600	-0 30908400	0.23591100
н	-4 15290600	-0.98370300	1 03338700
Н	-4 14416600	0 69342300	0 52273600
C	-6.02975000	-0.32315500	0.19234700
C	-6 61768900	-0 10634900	1 59907800
C	-6 61734400	0.71561700	-0.78066800
н	-6 34916300	-1 32103100	-0.15110000
C	-8 15248800	-0.09908400	1 60125300
н	-6.25012600	0.85314700	1 99256000
н	-6.23012000	-0.88115300	2 28090900
n C	-0.24487200 8 15423000	0.72376700	2.28090900
с u	6 24842100	1 71265700	-0.77028100
н ц	-0.24842100 6 25917300	0.53344100	1 80045000
n C	-0.23917300 8 73885300	0.033344100	-1.80043000
с u	8 52411800	0.94222100	2 61685300
н ц	-8.52411800 8.52070500	1.00614700	1 31664400
н ц	8 51535600	1 40488400	1.31004400
п u	-8.51555000	0.22728800	-1.40020400
п	-8.32292300	-0.23/28800	-1.10000400
п	-8.41408/00	0.01708200	0.97041100
	-10.27787600	0.91798200	0.05445500
п	-10.60866800	0.96700600	1.70063300
п	-10.02504200	-0.0533/500	0.2/418800
	-10.95501100	2.04012500	-0.13193600
п	-10./52/5/00	1.99192/00	-1.20239300
н	-10.62645000	3.02916500	0.22492400
н	4.511/8/00	-1.94053400	1.55/15200

С	6.37396900	-0.76306100	-0.13404400
Н	6.84126700	-0.78756300	-1.12380600
Н	6.71773300	-1.65719200	0.40082300
С	8.38025500	0.54050100	0.72629400
0	8.99865800	0.57704000	-0.56407700
Н	8.76371100	-0.34826900	1.26191500
С	9.97991300	1.61568400	-0.55970400
С	10.08269800	2.00297300	0.91939700
Н	10.92114300	1.23657400	-0.97200900
Н	9.63628900	2.45770500	-1.17472700
Н	10.83617400	1.39302200	1.44101600
Н	10.29367600	3.06039900	1.09277800
0	8.77454800	1.71665700	1.40191700
Н	-12.04348100	2.00171400	-0.02213100

Optimized geometry for molecular 2TF2

С	5.34133500	-1.08044000	-1.44831000
С	3.95412400	-1.07965200	-1.35549800
С	3.30501300	-0.83085900	-0.12938400
С	4.12990200	-0.58404100	0.98153600
С	5.51292800	-0.58381500	0.90071300
С	6.14407900	-0.83431600	-0.32471300
Н	5.81156200	-1.28221900	-2.40682000
Н	3.34492400	-1.27785500	-2.23101400
С	1.88998200	-0.83980900	-0.00748700
С	0.67726100	-0.85938600	0.08203200
С	-0.74102700	-0.88981600	0.20418100
С	-1.36202700	-0.62477100	1.44080400
С	-1.55628300	-1.19843900	-0.90256500
С	-2.74666600	-0.67288200	1.55854700
Н	-0.74503600	-0.38999000	2.30200700
С	-2.93942100	-1.24339100	-0.76854700
Н	-1.09137000	-1.40884500	-1.86034800
С	-3.56225300	-0.98416800	0.46100400
Н	-3.20583400	-0.47257800	2.52356600
Н	-3.55022300	-1.49164100	-1.63320900
F	3.55188700	-0.34514000	2.17453600
С	8.20791900	0.60567400	-0.68498800
Н	7.90838500	1.28607800	0.11908100
Н	7.80617300	1.00824500	-1.62198300
С	-5.06895600	-1.01107900	0.59024800
Н	-5.47300100	-1.77258800	-0.08586000
Н	-5.34366100	-1.31892800	1.60726100
С	-5.72411000	0.35337500	0.28785300
Н	-5.26992300	1.10841600	0.94293600
Н	-5.47248400	0.65403100	-0.73878200
С	-7.25190500	0.38811800	0.47089100
С	-7.78712500	1.82810800	0.35883800
С	-8.00077100	-0.52014300	-0.52199600
Н	-7.47723700	0.02884100	1.48861800
С	-9.31057600	1.90257700	0.52978100
Н	-7.51214700	2.23278100	-0.62651700
Н	-7.29402100	2.46710300	1.10236600
С	-9.52637800	-0.44375400	-0.35367600

Н	-7.73266300	-0.21857500	-1.54584100
Н	-7.67683000	-1.56165700	-0.41248400
С	-10.06139300	0.99615600	-0.46247200
Н	-9.64941800	2.94021500	0.41584200
Н	-9.57542000	1.60276600	1.55476100
Н	-10.00674900	-1.08923800	-1.09782700
Н	-9.80286500	-0.84840100	0.63174500
Н	-9.83787000	1.35949000	-1.47921800
С	-11.58372800	1.08957300	-0.25530000
Н	-11.86464600	2.15100100	-0.22745200
Н	-11.83333300	0.68587700	0.73634900
С	-12.42853900	0.38366800	-1.32181700
Н	-12.26299100	-0.69815700	-1.32867700
Н	-13.49673600	0.54845000	-1.14696100
Н	-12.19557700	0.76089400	-2.32434300
Н	6.08765200	-0.39354700	1.80175900
С	7.65237900	-0.80816700	-0.42879400
Н	7.97307700	-1.47474400	-1.23894300
Н	8.09811200	-1.19402100	0.49373500
С	11.48142500	1.99264600	-0.42991500
0	10.17843300	1.94015000	-1.00107400
С	9.72440200	0.62266300	-0.76970200
С	11.32281300	1.13345000	0.82817900
Н	12.22851200	1.56406400	-1.11543500
Н	11.73223900	3.03690900	-0.23174900
Н	10.08401500	-0.04693000	-1.57350300
Н	10.98232600	1.73046500	1.68433300
Н	12.23962700	0.60352500	1.10737000
0	10.31556900	0.18916800	0.45954300

5. Vuks equation

$$\frac{n_e^2 - 1}{n^2 + 2} = \frac{N}{3\varepsilon_0} \left[\alpha + \frac{2\Delta\alpha S}{3} \right]$$
$$\frac{n_0^2 - 1}{n^2 + 2} = \frac{N}{3\varepsilon_0} \left[\alpha - \frac{2\Delta\alpha S}{3} \right]$$
$$n^2 = \frac{n_e^2 + 2n_0^2}{3}$$
$$\Delta n = n_e - n_0$$
$$\alpha = (\alpha_{//} + 2\alpha_\perp)/3 = \frac{\alpha_{XX} + \alpha_{YY} + \alpha_{ZZ}}{3}$$
$$\Delta \alpha = \alpha_{//} - \alpha_\perp = \alpha_{XX} - \left(\frac{\alpha_{YY} + \alpha_{ZZ}}{2}\right)$$

6. The simulated molecular structure of 2BF2V

Fig. S7. The simulated molecular structure of 2BF2V.

 μ_x =0.1072, μ_y =0.7320, μ_z =0.3851

$$\mu = \sqrt{\mu_x^2 + \mu_y^2 + \mu_z^2}$$
$$\cos \alpha = \frac{\mu_y}{\mu} = 0.88$$

Code	Compound Structures	wt%
2H2BFB2V	C ₂ H ₅	8.27
3H2BFB2V	C ₃ H ₇	3.51
5H2BFB2V	C ₅ H ₁₁	3.53
2H2HBF2	C ₂ H ₅	
3H2HBF2	C ₃ H ₇	
5H2HBF2	C ₅ H ₁₁	
7HBF2	C ₇ H ₁₅	49.34
3HHBF3	C ₃ H ₇	
3HBBF3	C ₃ H ₇	
5HBBF3	C ₅ H ₁₁	
3HHV	C ₃ H ₇	35.35

7. Compositions of mixtures SNULC-P01 and SNULC-P02

Table S2. Chemical structures and compositions of mixture SNULC-P01

Code	Compound Structures	wt%
2BF2		5.02
3TF2	C ₃ H ₇	4.03
5BF1		6.10
2H2HBF2	C ₂ H ₅	
3H2HBF2	C ₃ H ₇	
5H2HBF2	C ₅ H ₁₁	
7HBF2	C ₇ H ₁₅	49.65
3HHBF3	C ₃ H ₇	
3HBBF3	C ₃ H ₇	
5HBBF3	C ₅ H ₁₁	
3HHV	C ₃ H ₇	35.20

Table S3. Chemical structures and compositions of mixture SNULC-P02