## Synthesis, Crystal Structure, and Thermoelectric Properties of Two New Barium Antimony Selenides: Ba<sub>2</sub>Sb<sub>2</sub>Se<sub>5</sub> and Ba<sub>6</sub>Sb<sub>7</sub>Se<sub>16.11</sub>

Jian Wang, Kathleen Lee, Kirill Kovnir\*

Department of Chemistry, University of California, Davis,

One Shields Avenue, Davis, CA 95616

## **Supporting Information**



**Figure S1.** Powder X-ray diffraction patterns of Ba<sub>2</sub>Sb<sub>2</sub>Se<sub>5</sub> before (middle) and after (top) the SPS process. Calculated pattern is shown on the bottom.



**Figure S2.** Temperature dependences of the thermal diffusivity (black) and heat capacity (blue) for Ba<sub>2</sub>Sb<sub>2</sub>Se<sub>5</sub>.

**Table S1.** EDX spectroscopy results for selected samples of Ba<sub>2</sub>Sb<sub>2</sub>Se<sub>5</sub>. The compositions were normalized to 2 Sb atoms.



**Table S2.** EDX spectroscopy results for selected samples of  $Ba_6Sb_7Se_{16.11}$ . The compositions were normalized to 7 Sb atoms. The admixtures contained in the samples prevent accurate composition determination.





Figure S3. Temperature dependence of the Seebeck thermopower of Ba<sub>2</sub>Sb<sub>2</sub>Se<sub>5</sub>.



Figure S4. Powder X-ray diffraction patterns of Ba<sub>2</sub>Sb<sub>2</sub>Se<sub>5</sub> SPS-pellet measured off-plane (top) and in-plane (middle). Calculated pattern is shown on the bottom.