Supporting Information

Cu–Ag core–shell nanowires for electronic skin with a petal molded microstructure

Yong Wei, Song Chen, Yong Lin, Zimei Yang, Lan Liu*

College of Materials Science and Engineering, Key Lab of Guangdong Province for

High Property and Functional Macromolecular Materials, South China University of

Technology, Guangzhou 510641, PR China.

E-mail: psliulan@scut.edu.cn

Experimental Section

Preparation of CuNWs and Cu-Ag core-shell NWs films: The bulky CuNWs film and Cu-Ag core-shell nanowires film (about 120 mg \cdot m⁻²) were formed by the vacuum filtration method without adding any polymer. The electrical resistance was immediately measured after the bulky film dried in vacuum oven at 50 °C for 1.0 h.

Preparation of PDMS/CuNWs conductor: The PDMS/CuNWs conductor was fabricated according to Ref. 1. Typically, CuNWs was dropped on a glass slide (about 120 mg·m⁻²) and dried in vacuum oven at 50 °C for 1.0 h. After that, liquid PDMS was immediately poured onto the CuNWs film, the liquid PDMS will penetrate into the CuNWs network due to its low viscosity and low surface energy. Then the PDMS was cured at 100 °C for 1 h and peeled off, highly cross-linked PDMS with CuNWs embedded on surface was obtained.

Property	Copper	Silver	Gold	
Resistivity	1.78×10 ⁻⁶ Ω·cm	1.65×10 ⁻⁶ Ω·cm	2.05×10 ⁻⁶ Ω·cm	
Content in earth	0.01%	0.00001%	0.0000001%	
Price	\$ 5.941/g for CuNWs	\$ 32.590/g for AgNWs ¹	\$ 1365.298/g for AuNWs	
	\$ 6.4/kg for bulk copper	\$ 517.1/kg for bulk silver	\$ 37000/kg for bulk gold	
Thermal conductivity	400 W/m·K	429 W/m·K	318 W/m·K	
Oxidative stability	Very poor	Excellent	Excellent	

Table S1 Property comparison of copper, silver and gold.

Calculation of the price of AuNWs

According to the Ref.2, 44 mg chloroauric acid (HAuCl₄·3H₂O), 1.5 mL oleylamine (OA) and 2.1 mL triisopropylsilane (TIPS) were required to synthesis gold nanowires (AuNWs). The price of HAuCl₄·3H₂O, OA and TIPS are \$ 80.5/g, \$ 0.65/mL and \$ 4.5/mL (The price of the reactants were taken from Aladdin), if the productivity of AuNWs is 100% and the price of solvent to wash the AuNWs is not taken into consideration, the price of AuNWs is about \$ 1365.298/g.

Core	Shell	Method	Applications	Reference	
CuNWs	Ni	One pot method at 180 °C	Flexible conductor	3	
CuNWs	Pt	Electrodeposition method	Transparent electrode	4	
CuNWs	Zn	Electrodeposition method	Transparent electrode	5	
	Sn	Electrodeposition method	Transparent electrode	5	
CuNWs	Ni	One not mothed at 210 %C	Tunable optic and magnetic	6	
	Au	One pot method at 210°C	properties		
CuNWs	Pt	Calvania dignlagoment	Oxygen Reduction	7	
		Garvanie displacement	Electrocatalysts		
CuNWs	Au	Electrodeposition method	DNA detection	8	
	Ni		Potential application in	9	
CuNWs		One pot method at 210 °C	microelectronics and magnetic		
			recyclable catalysis.		
CuNWs	Ag	Two step method	Conductive Fillers for LDPE	10	
		(Ag-amine reagent solution)		10	
CuNWs	Aσ	Replacement reaction with	ement reaction with Not provided		
		citric acid and PVP			
CuNWs	Ni	Electroplate	Transparent electrode	12	
CuNWs	CNTs	Self-Scrolling	Building blocks for novel	13	
			functional materials		
CuNFs	AZO	Electrospinning and	Transparent Electrode	14	
		reduction			
CuNWs	С	CVD followed by thermal	Electronic transport and thermal	15,16	
		decomposition	conductivity		
CuNWs	ODA	Hydrothermal treatment	Conductive Fillers for PS	17	
CuNWs	FeCo	Electrodeposition method	Control delivery of drugs or	18	
			macromolecules		
CuNWs	Graphene	PVD at 650 °C	Electrical and thermal	19	
		~	conductivity enhancement		
~		Galvanic displacement at		 	
CuNWs	Ag	room temperature without	Flexible E-skin	This work	
		any stirring or dispersant			

Table S2 Summary of core-shell nanowires based on CuNWs reported up to now.

Abbreviations: CuNFs, copper nanofibers; AZO, aluminum-doped zinc oxide; ODA, octadecylamine; CVD, chemical vapor deposition; PVD, physical vapor deposition; LDPE, low density polyethylene; DNA, deoxyribonucleic acid; PS, polystyrene.

Fig.S1 Formation of Cu-Ag alloyed structure through galvanic replacement reaction between CuNWs and AgNO₃ solution. FESEM images were taken after reacting 2.0 mL 5 mg·mL⁻¹ CuNWs suspension with 100 mL of (a) 0.1 mM, (b) 0.5 mM, (c) 1.0 mM, (d) 2.0 mM, (e) 5.0 mM and (f) 10.0 mM AgNO₃ solution for 30 min. (g) is the EDAX spectrum of selected area in Fig.3e and (h) is the higher magnification of the selected area in Fig.3f.

Fig.S2 FESEM images of m-PVA film with different magnifications to show the honeycomb-like structure of surface of m-PVA film.

Fig.S3 FESEM images of Cu-Ag NWs with different length dropp-coated on m-PVA film showing that only the Cu-Ag NWs with suitable length (< 20 μ m) can penetrate into the honeycomb-like holes on the surface of m-PVA film. To synthesis longer CuNWs (> 20 μ m), a higher EDA concentration (120 mM) and longer reaction time (2.0 h) was performed.

Fig.S4 Optical transmittance (a) and digital photographs (b) of the pure PDMS and

PVA film, micro-structured PDMS and PVA film (m-PDMS and m-PVA film).

Fig.S5 Contact angle of pure PDMS film, PVA film, m-PDMS and m-PVA film.

Fig.S6 The force applied to e-skin during the compression test.

Fig.S7 (a) SEM images of the surface of rose petal to show the information about the micropapillae arrays, which can be approximated as ellipsoids (semiminor and semimajor axis are given as 12.5 μ m and 18 μ m). (b) Change in contact area for the micropapillae arrays as a function of pressure from 0-20 kPa.

References

- 1 A. R. Rathmell, S. M. Bergin, Y. L. Hua , Z. Y. Li and B. J. Wiley, *Adv. Mater.*, 2010, **22**, 3558.
- 2 S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh and W. Cheng. *Nat. Commun.*, 2014, 5, 3132.
- 3 J. Song, J. Li, J. Xu and H. Zeng, Nano Lett., 2014, 14, 6298.
- 4 Z. Chen, S. Ye, A. R. Wilson, Y. C. Haac and B. J. Wiley, *Energy Environ. Sci.*, 2014, 7, 1461.
- 5 Z. Chen, S. Ye, I. E. Stewart and B. J. Wiley, ACS Nano, 2014, 8, 9673.
- 6 D. Zeng, Y. Chen, A. Lu, M. Li, H. Guo, J. Wang and D. L. Peng, *Chem. Commun.*, 2013, **49**, 11545.
- 7 S. M. Alia, K. Jensen, C. Contreras, F. Garzon, B. Pivovar and Y. Yan, ACS Catal., 2013, 3, 358.
- 8 E. Spain, A. McCooey, C. Dolan, H. Bagshaw, N. Leddy, T. E. Keyesa and R. J. Forster, *Analyst*, 2014, **139**, 5504.
- 9 H. Guo, Y. Chen, H. Ping, J. Jin and D. L. Peng, Nanoscale, 2013, 5, 2394.
- 10 X. Luo, G. A. Gelves, U. Sundararaj and J. L. Luo, *Can. J. Chem. Eng.*, 2013, **91**, 630.
- 11 J. Zhao, D. Zhang and X. Zhang, Surf. Interface Anal., 2015, 47, 529.
- 12 A. R. Rathmell, M. Nguyen, M. Chi and B. J. Wiley, Nano Lett., 2012, 12, 3193.
- 13 K. Yan, Q. Xue, D. Xia, H. Chen, J. Xie and M. Dong, ACS Nano, 2009, 3, 2235.
- 14 P. C. Hsu, H. Wu, T. J. Carney, M. T. McDowell, Y. Yang, E. C. Garnett, M. Li, L. Hu and Y. Cui, ACS Nano, 2012, 6, 5150.
- 15 Y. Zhao, J. Wang, Y. Zhang, Y. Li and Z. Yan, New J. Chem., 2012, 36, 1255.
- 16 Y. Zhao, Y. Zhang, Y. Li and Z. Yan, New J. Chem., 2012, 36, 1161.

- 17 L. He and S. C. Tjong, RSC Adv., 2015, 5, 38452.
- 18 B. Özkale, N. Shamsudhin, G. Chatzipirpiridis, M. Hoop, F. Gramm, X. Chen, X. Martí, J. Sort, E. Pellicer and S. Pane, ACS Appl. Mater. Interfaces, 2015, 7, 7389.
- 19 R. Mehta, S. Chugh and Z. Chen, Nano Lett., 2015, 15, 2024.