## Simple Planar Pervoskite Solar Cells with a Dopant-free Benzodithiophene

## **Conjugated Polymer as Hole Transporting Material**

Weiye Chen<sup>a,b</sup>, Xichang Bao<sup>b\*</sup>, Qianqian Zhu<sup>c</sup>, Dangqiang Zhu<sup>b</sup>, Meng Qiu<sup>b</sup>, Mingliang Sun<sup>a\*</sup>,

and Renqiang Yang<sup>b,d\*</sup>

<sup>a</sup>. Institute of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China. E-mail: <u>mlsun@ouc.edu.cn</u>.

 <sup>b</sup>. CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China. E-mail: <u>baoxc@qibebt.ac.cn</u>; <u>yangrq@qibebt.ac.cn</u>.
<sup>c</sup>. College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.

<sup>d</sup>. State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, China

## **Experimental Section**

#### Materials:

Methylammonium iodide (CH<sub>3</sub>NH<sub>3</sub>I) was prepared according to previous report work<sup>1</sup>. PbI<sub>2</sub> was supplied by Aladdin reagent (China). The poly[(4,8-bis-(2-ethylhexyloxy)ben-zo[1,2-b;4,5-b']di-thiophene)-2,6-diyl-alt-(4-(2-

elethylhexanoyl)-thieno[3,4-b]th-iopene)-2,6-diyl] (PBDTTT-C) and poly(3-hexylthiophene) (P3HT) were purchased from Solarmer Inc. and Luminescence Technology Corp., recpectively. ITO glass substrates with a sheet resistance of  $15\Omega$ /sq were obtained from Shenzhen Display (China).

## Solar Cell Fabrication:

ITO glass was cleaned in an ultrasonic bath with detergent, ultrapure water, acetone, and isopropyl alcohol for 20 min, respectively. The ITO glass was treated with  $O_2$ plasma for only 1 min to improve the wettability. The 1M perovskite precursor solution was prepared according to Seok method <sup>2</sup>. Then, the precursor solution was spin coated onto the treated ITO glass at 4000 rpm for 50 s in air with the relative humidity lower than 30%. During the spin coating, toluene was used to wash the surface to form high quality surface coverage. After thermal treatment at 100 °C for 10 min, a thin layer of HTM was spin coated onto the surface of perovskite layer with a 6 mg/mL in chlorobenzene solution under different speeds. The devices were completed after thermal deposition of 5 nm molybdenum oxide (MoO<sub>3</sub>) and 80 nm silver (Ag) as cathode at a pressure of  $4 \times 10^{-4}$  Pa. The device area was 0.1 cm<sup>2</sup> for each cell defined by shadow mask.

#### Measurements:

The absorption spectra of the films on ITO glass were observed by a scanning spectrophotometer (Varian Cary 50 UV/vis) in the range of 400–800 nm. Surface morphological characterizations of the films were characterized by a tapping-mode atomic force microscope (AFM, Agilent 5400). The thickness of the films was measured by Veeco Dektak150 surface profiler. Photoluminescence spectra were recorded by a Fluoromax 4 spectrometer (HORIBA Jobin Yvon) with a photo-excitation at 600 nm. Current density–voltage (J–V) characteristics of the devices were measured with a Keithley 2420 source measurement in dark or under the illumination of AM 1.5G, 100 mWcm<sup>-2</sup> with a Newport solar simulator. The scan rate for these J-V curves was 0.1 Vs<sup>-1</sup>. Light intensity was calibrated with a standard silicon solar cell. The external quantum efficiency (EQE) of solar cell was analyzed

using a certified Newport incident photon conversion efficiency (IPCE) measurement system.

The proof concept devices with a classical planar configuration of FTO/c-TiO<sub>2</sub>/CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>/P3HT/MoO<sub>3</sub>/Ag were fabricated. A PCE of 7.52% was achieved with  $J_{SC}$  of 16.16 mA cm<sup>-2</sup>,  $V_{OC}$  of 0.921 V and FF of 50.53%. The J-V curve of this device is show in Fig S1.



Fig. S1 Forward bias to short circuit (FB-SC) and short circuit to forward bias (SC-FB) current–voltage curves measured under simulated AM 1.5G 100 mW cm<sup>-2</sup> sun light with a scan rate of  $0.1 \text{ V s}^{-1}$ 

| Rotation | HTL       | V <sub>OC</sub> | $J_{SC}$        | FF    | PCE  |
|----------|-----------|-----------------|-----------------|-------|------|
| Speed    | Thickness | (V)             | $(mA\ cm^{-2})$ | (%)   | (%)  |
| (r/s)    | (nm)      |                 |                 |       |      |
| 600      | 50.37     | 0.815           | 13.55           | 57.44 | 6.34 |
| 700      | 38.31     | 0.801           | 13.71           | 60.18 | 6.60 |
| 800      | 32.11     | 0.868           | 17.68           | 64.83 | 9.95 |
| 1000     | 22.34     | 0.856           | 15.02           | 69.32 | 8.90 |
| 1250     | 10.14     | 0.842           | 16.15           | 63.50 | 8.63 |
| 1500     | 4.35      | 0.823           | 13.44           | 66.87 | 7.44 |

Table S1 The device performance of the perovskite solar cells with different thickness of PBDTTT-C HTL.

# **References:**

- P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, A. K. Y. Jen, Adv. Mater. 2014, 26, 3748-3754.
- N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, *Nat. Mater.*, 2014, 13, 897–903.