Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2015

Ba₄AgGa₅Pn₈ (n=P, As): New Pnictide-Based Compounds with Nonlinear Optical Potential

Ming-yan Pan,^a Zu-ju Ma,^b Xiao-cun Liu,^a Sheng-qing Xia, *^a Xu-tang Tao,^a and Ke-chen, Wu *^b

^{*a*} State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, Shandong 250100, People's Republic of China

^b Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China

Supporting Information

Contents

1. Figure S1. TG-DSC measurements on (a) $Ba_4AgGa_5P_8$ and (b) $Ba_4AgGa_5As_8$, conducted in an inert atmosphere of argon.

2. Figure S2. Powder XRD patterns of (a) Ba₄AgGa₅P₈ and (b) Ba₄AgGa₅As₈ recorded at room temperature.

The theoretical calculated patterns are provided for comparison as well. A small amount of GaPn impurity is

found in both compounds.

3. Figure S3. Optical absorption spectra measured on the polycrystalline samples of (a) Ba₄AgGa₅P₈ and (b)

 $Ba_4AgGa_5As_8.$

4. Figure S4. Electronic band structures calculated on (a) Ba₄AgGa₅P₈ and (b) Ba₄AgGa₅As₈.

5. Figure S5. Calculated total DOS and projected DOS for Ba₄AgGa₅As₈. The dotted line marked the Fermi level.

6. Figure S6. The calculated birefringence (Δn) for (a) Ba₄AgGa₅P₈ and (b) Ba₄AgGa₅As₈.

7. Figure S7. Calculated absorption coefficients of (a) Ba₄AgGa₅P₈ and (b) Ba₄AgGa₅As₈.

8. Figure S8. Calculated frequency-dependent second harmonic generation coefficients for Ba₄AgGa₅As₈.

9. Figure S9. Cutoff-energy-depending static SHG coefficients for Ba₄AgGa₅As₈. The dotted lines mark the different regions in VB and CB.

10. Figure S10. Model structure of $Ba_4AgGa_5Pn_8$ used for electronic structure calculations. Due to the arbitrary arrangement of mixed atoms, the space group is lowered to C2 (No.5). The Ba, Ga, Ag and Pn atoms are indicated as purple, green, yellow and pink spheres, respectively.

11. Figure S11. Coordination geometry plot for Ba cations in Ba₄AgGa₅P₈, related atoms are labeled in graph.

12. Figure S12. (a) Ball and stick structure view of Ba₄AgGa₅P₈, viewed down the c-axis. The Ba, Ga and P atoms are represented by pink, blue and red spheres, respectively. The mixed (Ag/Ga)P₄ tetrahedra are plotted in yellow colors. (b) An expanded view of the $\frac{1}{\infty}$ [AgGa₅P₁₀] column along the a-axis.

13. EDX analyses on the composition of a single crystal for (a) Ba₄AgGa₅P₈ and (b) Ba₄AgGa₅As₈.

14. Table S1. Refined atomic coordinates and isotropic displacement parameters for two polymorphs of $Ba_4AgGa_5Pn_8$ (Pn = P, As).

15. Table S2. The selected important interatomic distances (Å) in Ba₄AgGa₅Pn₈ (Pn=P, As).

Figure S1. TG-DSC measurements on (a) $Ba_4AgGa_5P_8$ and (b) $Ba_4AgGa_5As_8$, conducted in an inert atmosphere of argon.

Figure S2. Powder XRD patterns of (a) $Ba_4AgGa_5P_8$ and (b) $Ba_4AgGa_5As_8$ recorded at room temperature. The theoretical calculated patterns are provided for comparison as well. A small amount of GaPn impurity is found in both compounds.

Figure S3. Optical absorption spectra measured on the polycrystalline samples of (a) $Ba_4AgGa_5P_8$ and (b) $Ba_4AgGa_5As_8$.

Figure S4. Electronic band structures calculated on (a) $Ba_4AgGa_5P_8$ and (b) $Ba_4AgGa_5As_8$.

Figure S5. Calculated total DOS and projected DOS for Ba₄AgGa₅As₈. The dotted line marked the Femi level.

Figure S6. The calculated birefringence (Δn) for (a) $Ba_4AgGa_5P_8$ and (b) $Ba_4AgGa_5As_8$.

Figure S7. Calculated absorption coefficients of (a) $Ba_4AgGa_5P_8$ and (b) $Ba_4AgGa_5As_8$.

Figure S8. Calculated frequency-dependent second harmonic generation coefficients for Ba₄AgGa₅As₈.

Figure S9. Cutoff-energy-depending static SHG coefficients for $Ba_4AgGa_5As_8$. The dotted lines mark the different regions in VB and CB.

Figure S10. Model structure of $Ba_4AgGa_5Pn_8$ used for electronic structure calculations. Due to the arbitrary arrangement of mixed atoms, the space group is lowered to C2 (No.5). The Ba, Ga, Ag and Pn atoms are indicated as purple, green, yellow and pink spheres, respectively.

Figure S11. Coordination geometry plot for Ba cations in Ba₄AgGa₅P₈, related atoms are labeled in graph.

Figure S12. (a) Ball and stick structure view of $Ba_4AgGa_5P_8$, viewed down the c-axis. The Ba, Ga and P atoms are represented by pink, blue and red spheres, respectively. The mixed (Ag/Ga)P₄ tetrahedra are plotted in yellow colors. (b) An expanded view of the $\frac{1}{\infty}$ [AgGa₅P₁₀] column along the a-axis.

13. EDX analyses on the composition of a single crystal for (a) Ba₄AgGa₅P₈ and (b) Ba₄AgGa₅As₈.

(a) Ba₄AgGa₅P₈

Point 1

Element	Weight%	Atomic%	Composition
P K	21.68	47.36	8.54
Ga L	27.90	27.07	4.88
Ag L	5.41	3.40	0.61
Ba L	45.01	22.18	4

Point 2

Element	Weight%	Atomic%	Composition
РК	21.89	47.54	8.76
Ga L	28.43	27.43	5.05
Ag L	5.34	3.33	0.61
Ba L	44.33	21.71	4

Averaged Composition: Ba₄Ag_{0.61}Ga_{4.97}P_{8.65}

(b) Ba₄AgGa₅As₈

Point 1

Element	Weight%	Atomic%	Composition
As L	36.32	43.33	7.56
Ga L	22.43	28.76	5.02
Ag L	6.02	4.99	0.87
Ba L	35.23	22.93	4

Point 2

Element	Weight%	Atomic%	Composition
As L	36.46	43.39	7.70
Ga L	22.65	28.97	5.14
Ag L	6.18	5.11	0.91
Ba L	34.70	22.53	4

Averaged Composition: Ba₄Ag_{0.89}Ga_{5.08}As_{7.63}

30µm Electron Image 1

Table S1. Refined atomic coordinates and isotropic displacement parameters for two polymorphs of

Ba₄AgGa₅Pn₈ (Pn=P, As).

Atoms	Wyckoff site	x	y	z	Ueq ($Å^2$)	
	$Ba_4AgGa_5P_8$					
Ba1	8(c)	0.81096(10)	0.60903(4)	0.7542(2)	0.0204(2)	
Gal	8(c)	0.84356(15)	0.80091(6)	0.7492(4)	0.0088(3)	
Ag/Ga2 ^b	4(a)	1	1	1	0.0190(4)	
P1	8(c)	0.7961(4)	0.93114(16)	0.7481(13)	0.0210(7)	
P2	8(c)	0.5889(5)	0.7568(2)	0.9334(6)	0.0121(7)	
	Ba ₄ AgGa ₅ As ₈					
Ba1	8(c)	0.80368(4)	0.61010(2)	0.75587(6)	0.01815(12)	
Gal	8(c)	0.84459(7)	0.80115(3)	0.74621 (13)	0.01073(14)	
Ag/Ga2 ^b	4(a)	1	1	1	0.01522(17)	
As1	8(c)	0.79006(8)	0.93160(3)	0.74750(15)	0.02013(16)	
As2	8(c)	0.58454(8)	0.75922(3)	0.93462(10)	0.01127(15)	

 $^{a}U_{eq}$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

^bAg or Ga2 occupancy are both constrained to 50% at the mixing sites.

Table S2. The selected important interatomic distances (Å) in Ba₄AgGa₅Pn₈ (Pn=P, As).

Atom pairs	Distances (Å)	Atom pair	rs	Distances (Å)		
Ba ₄ AgGa ₅ P ₈						
Ba1– P1	3.301(5)	Gal –	P1	2.376(4)		
P1	3.409 (9)		P2	2.365(5)		
P1	3.485(9)		P2	2.371(4)		
P1	3.612 (5)		P2	2.380(4)		
P2	3.287(5)	Ag/Ga2-	P1 × 2	2.529(7)		
P2	3.331(5)		P1 × 2	2.546(6)		
P2	3.367(4)					
Ba ₄ AgGa ₅ As ₈						
Ba1– As1	3.3896(7)	Ga1–	As 1	2.4575(8)		
As1	3.4833(11)		As 2	2.4441(10)		
As1	3.5914(11)		As 2	2.4514(9)		
As1	3.7187(7)		As 2	2.4694(9)		
As2	3.3625(8)	Ag/Ga2-	As 1 × 2	2.6223(10)		
As2	3.4297(7)		As 1 × 2	2.6440(10)		
As2	3.4377(7)					