Supporting Information

Impact of Atomic Layer Deposited SiO_2 Passivation for High-k Ta_{1-x}Zr_xO on InP Substrate

Chandreswar Mahata^a, Il-Kwon Oh^a, Chang Mo Yoon^a, Chang Wan Lee^a, Jungmok Seo^a, Hassan Algadi^a, Mi-Hyang Sheen^b, Young-Woon Kim^b, Hyungjun Kim^a, Taeyoon Lee^{a*}

^aNanobio Device Laboratory, School of Electrical and Electronic Engineering,
Yonsei University, 134 Shinchon-Dong, Seodaemun-Gu, Seoul 120-749, Republic of Korea
^bDepartment of Materials Science and Engineering, Seoul National University,
Gwanak-Gu, Seoul 151-744, Korea

* Corresponding author:

Tel: +82-2-2123-5767

Fax: +82-2-313-2879

e-mail address: taeyoon.lee@yonsei.ac.kr

<u>CET and k_{eff} calculation</u>

Capacitance equivalent thickness (CET) extracted

$$CET = \varepsilon_0 k_{SiO_2} / C_{ox}$$
(1)
= 8.854×10⁻¹²F/m*3.9*7.85×10⁻⁹m²/1.5×10⁻¹⁰F
= 1.8×10⁻⁹m

from the low frequency $f_{100Hz}(100Hz)$, as it is close the oxide capacitance) C–V curve was 1.8 nm for the Ta_{1-x}Zr_xO on InP. Here k_{SiO2} is relative permittivity of SiO₂, C_{ox} is accumulation capacitance per unit area, and ε_0 is the free space permittivity [1].

The equivalent $k_{Tal-xZrxO}$ value can was calculated as,

$$k_{Ta_{1-x}Zr_{x}O} = k_{SiO_{2}}T_{ox} / CET$$

$$= 3.9*9.2 \text{nm}/1.8 \text{nm}$$

$$= 19.93$$
(2)

where T_{ox} is the total physical thickness of the dielectric layer can be attained from TEM image. From above relation we have achieved high equivalent dielectric constant value of ~20 of Ta₁. _xZr_xO nanolaminated dielectric.

Figure S1. Capacitance-voltage characteristics of (a) $TaN/Ta_{1-x}Zr_xO/n-InP$ MOS capacitor, and (b) $TaN/Ta_{1-x}Zr_xO/SiO_2/n-InP$ MOS capacitor under as-deposited and annealed (PDA) conditions.

The conductance method has been widely used to calculate accurately reliable D_{it} estimated around midgap, as the trap response is strongly temperature dependent. Another criteria for accurate measures of the D_{it} can be obtained for high-k/III-V interfaces provided that the D_{it} is sufficiently low, for $C_{ox} > qD_{it}$, where C_{ox} is the accumulation capacitance density of the high-k oxide and q the electronic charge[2]. The movement of conductance peaks in the contour maps given in the manuscript is a sign of the conduction band bending efficiency as a

function of applied gate bias [3]. Interface trap density (D_{it}) as a function of trap energy lavel (ΔE) can be calculated with the help of following equations:

$$D_{ii} \approx 2.5 \frac{(G_p / \omega)_{\text{max}}}{Aq}$$
(3)

$$f = \frac{1}{2\pi\tau} = \frac{\upsilon_{th}\sigma N}{2\pi} \exp\left[\frac{-\Delta E}{k_B T}\right]$$
(4)

where q is the electronic charge, A is the area of the capacitor, $(G_p/\omega)_{max}$ is maximum peak of conductance map, f is the applied frequency, where τ is the characteristic trapping time, σ is the trap capture cross section, v_{th} is the carrier thermal velocity, and N is the density of state in the conduction band. The conductance peak shift indicates that the n-InP surface potential responds efficiently to the gate bias when the Fermi level is located between conduction band edge and midgap.

The D_{it} values in upper half bandgap were extracted from the n-type TaN/Ta₁. _xZ_xO/SiO₂/InP devices. The D_{it} value near the conduction band was at 0.27 eV was 4×10¹²cm⁻ ²eV⁻¹. In case of TaN/Ta_{1-x}Z_xO/InP interface trap density calculation results show that $qD_{it} > C_{ox}$. In this case this conductance method becomes not sensitive to extract D_{it} , and the calculated values could be overestimated by an order of magnitude [3]. So for without SiO₂ passivation sample we could not calculate the D_{it} effectively. We also compared the D_{it} characteristics with other published recent data and has been described in Figure S2(b).

Figure S2. Interface trap distribution of $TaN/Ta_{1-x}Zr_xO/SiO_2/n-InP$ MOS capacitor in the InP band gap obtained from the conductance measurement. (b) Comparison of D_{it} with different published data recently.

We have calculated the apparent doping profile from high frequency capacitance-voltage (C_{hf} - V_g) characteristics. The depletion depth (X_{dHF}) and apparent doping (N_{appHF}) as a function of applied gate potential (V_g) are expressed as follows [10]:

$$X_{dHF}(V_g) = \varepsilon_{InP}\left(\frac{1}{C_{HF}(V_g)} - \frac{1}{C_{OX}}\right)$$
(5)

$$\frac{1}{N_{appHF}(V_g)} = \left(\frac{q\varepsilon_{InP}}{2}\right) \left(\frac{\delta(1/C_{HF}^2(V_g))}{\delta V_g}\right)$$
(6)

where ε_{InP} is the InP permittivity, C_{ox} is the gate oxide capacitance/area, q is the electronic charge.

Figure S3. Apparent doping profiles for the n-InP layer from MOS capacitor high frequency C–V characteristics.

Our calculated apparent substrate doping was calculated to be approximately 1.5×10^{17} cm⁻³, which very close to the value supplied from the manufacturing semiconductor company.

References:

[1] L.-S. Wang, L. Liu, J.-P. Xu, S.-Y. Zhu, Y. Huang, and P.-T. Lai, IEEE Trans. Electron. Dev., 2014, **61**,742-746.

[2] Roman Engel-Herbert, Yoontae Hwang, and Susanne Stemmer, Appl. Phys. Lett., 2010, 97, 062905.

[3] H. C. Lin, G. Brammertz, K. Martens, G. de Valicourt, L. Negre, W. E. Wang, W. Tsai, M. Meuris, and M. Heyns, Appl. Phys. Lett., 2009, 94, 153508.

[4] T. Aoki, N. Fukuhara, T. Osada, H. Sazawa, M. Hata, and T. Inoue, Appl. Phys. Lett., 2014, 105, 033513.

[5] Y. Hwang, R. E.-Herbert, N. G. Rudawski, and S. Stemmer, Appl. Phys. Lett., 2010, 96, 102910.

[6] V. Djara, M. Sousa, N. Dordevic, L. Czornomaz, V. Deshpande, C. Marchiori, E. Uccelli,

D. Caimi, C. Rossel, J. Fompeyrine, Microelectron. Eng., 2015, 147, 231-234.

[7] T. Zhen, Z. L.-Feng, W. Jing, and X. Jun, Chin. Phys. B, 2014, 23, 017701.

[8] Z. L.-Feng, T. Zhen, W. Jing, and X. Jun, Chin. Phys. B, 2014, 23, 078102.

[9] M. Xu, J. J. Gu, C. Wang, D. M. Zhernokletov, R. M. Wallace, and P. D. Ye, J. Appl. Phys., 2013, **113**, 013711.

[10] S. P. Voinigescu, K. Iniewski, R. Lisak, C. A.T. Salama, J. P. Noel, D. C. Houghton, Solid-State Electron., 1994, **37**, 1491.