Supplementary information

N-heteroheptacenequinone and N-heterononacenequinone:

synthesis, physical properties, crystal structures and

photoelectrochemical behaviors

Junbo Li^{a,b}, Jianwei Miao^c, Guankui Long^a, Jing Zhang^a,Yongxin Li,^d Ganguly Rakesh^d Yang Zhao^a, Yi Liu,^e Bin Liu^c*, Qichun Zhang^{a,d}*

^aSchool of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore

^bSchool of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China

^cSchool of chemistry and biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore

^dDivision of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore

^eThe Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States

Contents

1, The crystal data of TAHD and TAND	S2-S3
2, The thermal analysis of HTAHD, TAHD, HTA	ND and
TAND	S4-S5
3, The AFM images of TAHD and TAND	S6
3, The pictures of photoelectrochemical cell	S6,S7
4, Mott-Schottky plot of TAHD and TAND	S8
5, Original spectra of NMR, HRMS and FTIR	S9-S20

Identification code	TAHD				
Empirical formula	C70 H92 N4 O2 Si4				
Formula weight	1133.84				
Temperature	103(2) K				
Wavelength	0.71073 Å				
Crystal system	Triclinic				
Space group	P -1				
Unit cell dimensions	$a = 10.1577(4)$ Å $\alpha = 84.169(2)^{\circ}$.				
	$b = 10.6488(4) \text{ Å} \qquad \beta = 88.405(2)^{\circ}.$				
	$c = 17.1688(6) \text{ Å} \qquad \gamma = 63.987(2)^{\circ}.$				
Volume	1660.04(11) Å ³				
Z	1				
Density (calculated)	1.134 Mg/m ³				
Absorption coefficient	0.135 mm ⁻¹				
F(000)	612				
Crystal size	0.40 x 0.24 x 0.02 mm ³				
Theta range for data collection	2.34 to 30.12°.				
Index ranges	-14<=h<=14, -15<=k<=14, -24<=l<=24				
Reflections collected	58385				
Independent reflections	9733 [$R(int) = 0.0822$]				
Completeness to theta = 30.12°	99.5 %				
Max. and min. transmission	0.9973 and 0.9479				
Refinement method	Full-matrix least-squares on F ²				
Data / restraints / parameters	9733 / 6 / 374				
Goodness-of-fit on F ²	1.040				
Final R indices [I>2sigma(I)]	R1 = 0.0772, wR2 = 0.1969				
R indices (all data)	R1 = 0.1538, wR2 = 0.2499				
Largest diff. peak and hole	1.058 and -0.465 e.Å ⁻³				

Table S1. Crystal data and structure refinement for TAHD.

···· · · · · · · · · · · · · · · · · ·						
Identification code	TAND					
Empirical formula	C82 H102 N6 O2 Si4					
Formula weight	1316.06					
Temperature	103(2) K					
Wavelength	0.71073 Å					
Crystal system	Triclinic					
Space group	P -1					
Unit cell dimensions	a = 7.9319(8) Å α = 110.316(3)°. b = 14.4277(12) Å β = 97.166(3)°. c = 18.4216(16) Å γ = 101.674(3)°.					
Volume	1892.0(3) Å ³					
Z	1					
Density (calculated)	1.155 Mg/m ³					
Absorption coefficient	0.128 mm ⁻¹					
F(000)	708					
Crystal size	0.22 x 0.20 x 0.02 mm ³					
Theta range for data collection	1.56 to 27.91°.					
Index ranges	-10<=h<=10, -18<=k<=19, -24<=l<=24					
Reflections collected	30885					
Independent reflections	9032 [R(int) = 0.1013]					
Completeness to theta = 27.91°	99.5 %					
Absorption correction	Semi-empirical from equivalents					
Max. and min. transmission	1.0 and 0.84					
Refinement method	Full-matrix least-squares on F ²					
Data / restraints / parameters	9032 / 0 / 437					
Goodness-of-fit on F ²	0.993					
Final R indices [I>2sigma(I)] R indices (all data)	R1 = 0.0611, $wR2 = 0.1056R1 = 0.1398$, $wR2 = 0.1346$					
Largest diff. peak and hole	0.391 and -0.444 e.Å ⁻³					

 Table S2.
 Crystal data and structure refinement for TAND.

Figure S1. The TGA curve of HTAHD.

Figure S2. The TGA curve of TAHD.

Figure S3. The TGA curve of HTAND.

Figure S4. The TGA curve of TAND.

Figure S5. AFM images of (a) TAHD and (b) TAND thin films by spin-coating

Figure S6. Experimental set-up for photoelectrochemical tests.

Figure S7. Photoelectrochemical cell (three electrode set-up) applied in this work.

Figure S8. Mott-Schottky plot of **TAHD** measured at a frequency of 1000 Hz. The flat-band potential of **TAHD** is indicated by the intercept of the dashed lines.

Figure S9. Mott-Schottky plot of TAND measured at a frequency of 1000 Hz. The flat-band potential of TAND is indicated by the intercept of the dashed lines.

Figure S10. The ¹H NMR of compound HTAHD.

Figure S11. The ¹³C NMR of compound HTAHD.

Figure S12. The HRMS of compound HTAHD.

Figure S13. The FTIR of compound HTAHD.

Figure S14. The ¹H NMR of compound TAHD.

Figure S15. The ¹³C NMR of compound TAHD.

Figure S16. The HRMS of compound TAHD.

Figure S17. The FTIR of compound TAHD.

Figure S18. The ¹H NMR of compound HHATA.

Figure S19. The ¹³C NMR of compound HHATA.

Figure S20. The HRMS of compound HHATA.

Figure S21. The FTIR of compound HHATA.

Figure S23. The ¹³C NMR of compound HATA.

Figure S24. The HRMS of compound HATA.

Figure S25. The FTIR of compound HATA.

Figure S26. The ¹H NMR of compound HTAND.

Figure S27. The ¹³C NMR of compound HTAND.

Figure S28. The HRMS of compound HTAND.

Figure S29. The FTIR of compound HTAND.

Figure S30. The ¹H NMR of compound TAND.

Figure S31. The ¹³C NMR of compound TAND.

emental	Compo	osition I	Report									Page 1
ingle Mas plerance = ement pre umber of is	ss Anal 20.0 PF diction: sotope p	Iysis PM / DE Off beaks use	BE: min = - ed for i-FIT	1.5, max = = 3	50.0					TIPS	TIPS	
onoisotopic 14992 formu ements Use 77-78 H: 14Ru: 0-1	Mass, E ula(e) eva ed: : 20-98 184Os: (ven Electr aluated wit N: 1-4 C 0-3 1860	ron lons th 1 results v D: 0-3 96R Ds: 0-3 18	within limits u: 0-1 98F 7Os: 0-3 1	(up to 50 clo Ru: 0-1 99F 88Os: 0-3	sest results fo tu: 0-1 100F 189Os: 0-3	r each mass Ru: 0-1 101 190Os: 0-3	Ru: 0-1 102Ru: 0- 192Os: 0-3 Si: 4-	1 (
78H96N4O23 IB-6 48 (1.05	Si4 i6)									TIPS	TIPS	1: TOF MS ES+
00-1							123	3.6643				1.0101000
-												
70												
1												
0.1	1232.60	123	2.80	1233.00	1233.20	1233.40	1233.60	1233.80	1234.00	1234.20	1234.40 123	4.60 1234.80 m/z
inimum: xximum:			100.0	20.0	-1.5 50.0							
	Calc.	Mass	mDa	PPM	DBE	i-FIT	i-FIT	(Norm) Formula				
ass												

Figure S32. The HRMS of compound TAND.

Figure S33. The FTIR of compound TAND.