Supporting Information for

Synthesis of FeCo Alloy Magnetically-Aligned Linear Chains by Polyol Process: Structural and Magnetic Characterization

Dustin M. Clifford*, Carlos E. Castano, Amos J. Lu, and Everett E. Carpenter*

Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284

Authors to whom correspondence should be addressed: clifforddm@mymail.vcu.edu, ecarpenter2@vcu.edu

Figure Si. FeCo alloy cubes produced under similar reaction conditions using mechanical stirrer (no external field). Note the presence of cobalt ferrite impurities.

(b) | Element | $\mathrm{Wt} \%$ | $\mathrm{At} \%$ |
| :---: | :---: | :---: |
| CK | 6.25 | $\mathbf{2 2 . 4 9}$ |
| | 3.39 | 9.17 |
| | 51.30 | 39.70 |
| CoK | 39.06 | 28.64 |

Figure S2. FeCo MALCs taken at low mag (a) used for EDS analysis with results (b) indicating an Fe-rich alloy of $\mathrm{Fe}_{58} \mathrm{Co}_{42}$.

(b)

Element	$\mathrm{Wt} \%$	$\mathrm{At} \%$
OK	16.50	41.10
FeL	65.34	46.62
CoL	18.16	12.28

Figure S3. EDS (energy dispersive spectroscopy) point analysis (a) (red cross-hair) on secondary phase formation of 1000 K annealed FeCo MALCs. Note the formation of a continuous microwires after annealing. Quantitative EDS results (b) indicate secondary phase to be cobalt ferrite with approximate atomic ratio calculated to be $\mathrm{CoFe}_{4} \mathrm{O}_{3.5}$.

(b) \quad| Element | $\mathrm{Wt} \%$ | $\mathrm{At} \%$ |
| :---: | :---: | :---: |
| OK | 2.81 | 9.4 o |
| FeL | 48.02 | 45.99 |
| CoL | 49.16 | 44.61 |

Figure S4. EDS (energy dispersive spectroscopy) point analysis (a) on FeCo alloy microwire region (nonsecondary phase) of annealed (FeCo MALCs indicated by red-crosshair). Quantitative EDS results (b) indicate a Co-rich alloy of approximately $\mathrm{Fe}_{47} \mathrm{Co}_{53}$ by atomic ratio.

Figure $\mathbf{S}_{\mathbf{5}}$. Zero-field (bottom) and field cooled (top) curves of mass susceptibility from 50 to 400 K measured under an external field of 500 Oe. Ferromagnetism is indicated by top (fc) as it possesses higher magnetization beginning at 50 K than (lower) zfc plot. The blocking temperature, T_{B}, is over 400 K .

