Electronic Supplementary Information (ESI)

CO catalytic oxidation on Al-doped graphene-like ZnO monolayer sheets:

a first-principles study

Dongwei Ma^{1,*}, Qinggao Wang¹, Tingxian Li¹, Zhenjie Tang¹, Gui Yang¹, Chaozheng He^{2,*}, and Zhansheng Lu³

¹School of Physics, Anyang Normal University, Anyang 455000, China

²Physics and Electronic Engineering College, Nanyang Normal University, Nanyang 473061, China

³ College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007, China

^{*}Corresponding author. E-mail: <u>dwmachina@126.com</u> (Dongwei Ma).

^{*}Corresponding author. E-mail: <u>hecz2013@nynu.edu.cn</u> (Chaozheng He).

Fig. S1. Several atomic configurations for the O_2 ((a), (b), and (c)) and CO ((d) and (e)) adsorption on the pristine g-ZnO monolayer sheet. The nearest distance between the adsorbed molecules and the sheet, and the adsorption energies are given.

Fig. S2. Atomic configurations of two typical states for the O_2 adsorption at the sites away from the doped Al atom on the Al-g-ZnO monolayer sheet. The adsorption energies are given.

Fig. S3. The atomic configurations and adsorption energies for the states of O_2 dissociative adsorption on the Al-g-ZnO monolayer sheet. The O atoms from the dissociated O_2 are denoted as blue spheres. The adsorption energies were calculated with respect to the free O_2 molecule and the bare Al-g-ZnO sheet.

Fig. S4. Atomic configuration of the considered initial (left) and fully optimized (right) states for the coadsorption of O_2 and CO molecules on the Al-g-ZnO monolayer sheet.

Fig. S5. Atomic configuration of the carbonate-like MS state and the state of CO_2 physisorbed on the atomic O-covered Al-g-ZnO monolayer sheet are shown in (a) and (b), respectively. The former is more stable than the latter by 1.48 eV.