### Supplementary information

# A charge neutral iron (II) complex with above room temperature spin crossover (SCO) and hysteresis loop

Kuppusamy Senthil Kumar<sup>a</sup>, Ivan Šalitroš<sup>b</sup>, Benoît Heinrich<sup>a</sup>, Olaf Fuhr<sup>c</sup> and Mario Ruben<sup>a,c\*</sup>

<sup>a</sup>Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg cedex 2, France.

<sup>b</sup> Institute of Inorganic Chemistry, Technology and Materials, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 81237, Slovak Republic.

<sup>c</sup>Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.

\*Email: mario.ruben@kit.edu

| 1. Scheme S1 Synthesis of [Ru(L <sup>1</sup> ) <sub>2</sub> ]                                                              | - 2 |
|----------------------------------------------------------------------------------------------------------------------------|-----|
| 2. Figure S1 <sup>1</sup> H NMR spectrum of [Fe(L) <sub>2</sub> ] in CHCl <sub>3</sub> /CH <sub>3</sub> OH solvent mixture | - 3 |
| 2. Figure S2 <sup>1</sup> H NMR spectrum of [Fe(L) <sub>2</sub> ] in DMSO solvent                                          | - 4 |
| 2. Figure S3 UV-vis absorption spectrum of [Fe(L) <sub>2</sub> ] in DCM/MeOH solvent                                       |     |
| mixture                                                                                                                    | 5   |
| 3. Figure S4 UV-vis absorption and PL spectra of $[Fe(L^1)_2]$ in DCM/MeOH                                                 |     |
| solvent mixture                                                                                                            | 5   |
| 4. Figure S5 UV-vis absorption and PLE spectra of (a) $L^{1}H$ and (b) $[Fe(L^{1})_{2}]$ in                                |     |
| DCM/MeOH solvent mixture.                                                                                                  | 6   |
| 5. Figure S6 (a) UV-vis absorption and (b) PL spectra of $[Fe(L^1)_2]$ and $[Ru(L^1)_2]$                                   |     |
| in DCM/MeOH solvent mixture                                                                                                | 7   |
| 6. Figure S7 UV-vis absorption and PL spectra of (a) $L^{1}H$ and (b) $[Fe(L^{1})_{2}]$                                    |     |
| in solid state                                                                                                             | 8   |
| 7. Figure S8 $\chi T$ vs. T plot of crystalline form of [Fe(L <sup>1</sup> ) <sub>2</sub> ]                                | 9   |

#### Synthesis of [Ru(L<sup>1</sup>)<sub>2</sub>]



## Scheme S1 Synthesis of [Ru(L<sup>1</sup>)<sub>2</sub>]

#### Synthesis of [Ru(L<sup>1</sup>)<sub>2</sub>]

L<sup>1</sup>H (0.108g, 0.4 mmol) was added to 10 ml of dry DMF under Ar. To this 55  $\mu$ L (0.4 mmol) of Et<sub>3</sub>N was added and stirred for 15 mins. To this Ru(DMSO)<sub>4</sub>Cl<sub>2</sub> (0.097g, 0.2 mmol) was added and the mixture stirred at 120°C for 12 hrs and cooled. A precipitate was obtained which was filtered and washed with 2x10ml each of H<sub>2</sub>O and MeOH and dried under vacuum to yield 32 mg (25%) of dark yellow-orange powder. ESI-MS in CH<sub>2</sub>Cl<sub>2</sub>/CH<sub>3</sub>OH (Da): m/z, (assigned structure) = 665.04 (C<sub>22</sub>H<sub>16</sub>N<sub>14</sub>O<sub>4</sub>RuNa, calc. = 665.04). Elemental Analysis of the powder: Calc. for: [**Ru**(L<sup>1</sup>)<sub>2</sub>]. 1H<sub>2</sub>O (C<sub>22</sub>H<sub>18</sub>N<sub>14</sub>O<sub>5</sub>Ru) C, 40.06; H, 2.75; N, 29.73; Found: C, 40.28; H, 2.7; N, 29.9. UV-vis in 7:3 CH<sub>2</sub>Cl<sub>2</sub>/CH<sub>3</sub>OH;  $\lambda_{max}$ /nm ( $\epsilon$ /10<sup>-4</sup> cm<sup>-1</sup> M<sup>-1</sup>): 428 (0.78), 308 (1.07), 299 (1.13, 265 (1.8) and 255 (1.9).



**Figure S1** <sup>1</sup>H NMR spectrum of [**Fe(L)**<sub>2</sub>] in CHCl<sub>3</sub>/ CH<sub>3</sub>OH solvent mixture (top). Expanded version of the top spectrum in the 10 -11.5 ppm spectral range (bottom).



Figure S2 <sup>1</sup>H NMR spectrum of  $[Fe(L)_2]$  in DMSO solvent. The spectrum at the top is 100 times magnified version of the below spectrum.



Figure S3 UV-vis absorption spectrum of [Fe(L)<sub>2</sub>] in DCM/MeOH solvent mixture.



Figure S4 UV-vis absorption and PL spectra of  $[Fe(L^1)_2]$  in DCM/MeOH solvent mixture.



Figure S5 UV-vis absorption and PLE spectra of (a)  $L^1H$  and (b)  $[Fe(L^1)_2]$  in DCM/MeOH solvent mixture.



Figure S6 (a) UV-vis absorption and (b) PL spectra of  $[Fe(L^1)_2]$  and  $[Ru(L^1)_2]$  in DCM/MeOH solvent mixture. The UV-vis spectra are normalized at MLCT maxima for comparison purpose and the optical densities of the complex solutions were fixed at ca. 0.09 for PL measurements.



Figure S7 UV-vis absorption and PL spectra of (a)  $L^1H$  and (b)  $[Fe(L^1)_2]$  in solid state. The small peaks around 430 and 470 nm are originated from the light source. The excitation wavelengths are 338 and 334 nm for  $L^1H$  and  $[Fe(L^1)_2]$  respectively.



**Figure S8**  $\chi T$  vs. *T* plot of crystalline form of [Fe(L<sup>1</sup>)<sub>2</sub>] under standard measurement conditions, this form of the complex is photomagnetically inactive upon either red or green light irradiation ( $\lambda = 637$  nm or 532 nm, 10 mW cm<sup>-2</sup>).