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A- Evolution of the density of the composite according to the crystalline fraction
Figure A displays the evolution of the density and relative density of the composite
series. Since the crystalline phase displays a larger density (6.8 g/cm?3) than the glassy
phase (5.2 g/cm3), the absolute density of the composite naturally increases with the
crystalline phase fraction. Within a 1% uncertainty in the measurement of the density
and the possibility of a certain amount of porosity in the composites, the increase can be
divided in two steps. The first step is a linear increase of the density, maintaining the
relative density at an almost 100% value. The relative density nonetheless decreases
from 30% crystalline fraction, reflecting weaker capability of the crystalline phase to be

shaped under these experimental conditions.

Figure A. Evolution of the density and relative density of the series of composites SiAsTe-BiSbTe.

B- Description of the theoretical basis of the effective medium theory (EMT) and

its generalized version (GEMT).



The effective medium theory (EMT) consists in a set of approximations that allow
calculating the macroscopic properties of an inhomogeneous medium, based solely on
the properties of the phases constituting the medium. It was initially developed by
Bruggeman between 1935 and 1937 to calculate the dielectric constants and
polarizabilities of heterogeneous crystalline media . The central approximation of this
theory is to consider each particle of each phase immersed in a matrix displaying the
effective properties of the macroscopic material. Thus, by choosing appropriate fluxes
and potentials for continuity equations, it becomes possible to derive the Eq.(B-1) for a

given property x

T, Xi-Xe (B-1)

where @; is the volume fraction of the phase i, x; and y. are the properties associated
with the phase i and with the effective medium, respectively, and with L; as the
depolarization factor of the phase i. For spherical particles in dimension 3, the value of L;
can be precisely calculated and equals to 1/3 ?, yielding the better-known form of Eq.(B-
1) where (1-L;)/L; equals to 2. In 1952, Landauer derived a subsequent equation to
calculate the electrical conductivity in multi-phasic metallic media 3, leading to further
developments in the composites field. The previous year, Odelevskii had in fact already
applied the same formalism to the thermal conductivity % These equations have also
been widely used in various scientific domains such as mechanics > ¢ or optics 7-°.

Further details about this theory can be found in numerous references 2 1012,



For the electrical conductivity o and the thermal conductivity A, the EMT theory

leads to the following formula in the presence of two phases 34
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where @; and @, are the volume fractions of the phases 1 and 2, respectively. The
subscripts 1, 2 and e correspond to the phase 1, 2 and the effective medium,
respectively.

In the frame of the EMT, the percolation threshold is solely determined by the
depolarization factors L; of each phase ', in contradiction with experiments where both
the shape of the grains and their distribution play a major role 3. McLachlan et al.
unified the EMT and percolation theories under a phenomenological model, valid for a
two-phases compound with a distribution of asymmetric grains. This equation was
originally successfully applied to superconductors > 13, The generalized EMT equation
(the so-called GEMT equation) for a given property x of a two-phases composite is

expressed as

=0 (B-4)

where A is a constant that depends on the actual percolation threshold . (of the phase
2 in the phase 1) through the equation A = (1-¢.)/@. and t is a constant representing

the asymmetry of the microstructure (in terms of connection between the grains). Both



factors are directly linked to the depolarization factors L; of each phase as in Eq.(B-1).
Using a ¢ of 1/3 and a t factor set to 1, the EMT is then obtained in the case of spherical
grains. The factor t can be directly calculated in simple cases such as monodisperse and
isotropic oriented or non-oriented grains. However, these two new parameters are
difficult to assess prior to the experiment in general and have to be considered as free
parameters in the fitting procedure. This new formalism can be directly applied to the

electrical and thermal conductivities, yielding the equations

¢ =0 (B-5)
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where all the constants are the same as described in Egs. B-2, 3 and 4.

C- Discussion on the effect of varying the electrical resistivity ratio on the
presence of a ZT maximum

Contrarily to the effect of Seebeck coefficient and thermal conductivity ratios on the
maximum ZT in composites, the effect of the electrical resistivity ratio on the ZT.x
seems to be shallow. On Figure C, the evolution of this ratio along many orders of
magnitude (from 102 to 107) is presented, while keeping the Seebeck coefficients and
thermal conductivities are kept at favorable values (respectively 10 and 0.1). It is
depicted that no electrical resistivity ratio allows for an improved ZT,.x. This may be
due to the fact that p drops dramatically after the percolation threshold ¢, leaving
values of p(¢@>@,) almost unchanged whichever p; may be. The dotted curves, where the

ZT . seems to be increased, reflect situations when the ZT of the matrix phase (phase



1) is set to higher values than the ZT of the embedded phase (phase 2). In a situation
where phase 2 is an efficient thermoelectric material such as Bi,Tes, it does not
represent the properties of any existing materials and even breaks Wiedermann-Franz

law.

Figure C. Evolution of ZT with the crystalline fraction of phase 2 embedded in a matrix (phase 1), with different ratios
of the electrical resistivity. No significant impact is observed on the maximum ZT nor on its phase 2 fractions. Dotted
curves represent the cases where the properties of phase 1 have no physical values (very low resistivity together with

very low thermal conductivity -exceeding Wiedermann-Franz law- and very high thermopower).

D- Discussion on the outcomes of using the GEMT on the presence of a ZT
maximum

Figure D presents different scenarios of the GEMT with t varying between 1 and 2
and ¢, between 10 and 33%. These results emphasize the possibility of maintaining at

least an increase in ZT while using the more complex GEMT model.
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Figure D. Evolution of ZT as a function of crystalline fraction for different scenario with t varying between 1 and 2 and
c between 10 and 33%. In every case, an increase in the ZT values is predicted and is even more pronounced when

the percolation crystalline fraction decreases.

When moving the percolation threshold from 33% to lower values, not only the
maximum ZT is preserved but also increased. This feature can be explained by the
combination of two factors. First, Seebeck coefficients and thermal conductivities are
not strongly impacted by a shift in ¢,. For these two properties, it is due to a small
contrast between the insulating and conducting materials properties to which we apply
the EMT formalism (respectively A/a and A itself). On the other hand, for the electrical
resistivity, the drop at ¢, is very sharp. With a and A slightly favorable at lower
crystalline fractions and the drop in p pushed back to lower values of ¢, the resulting
maximum ZT value is slightly enhanced.

As for the effect of t on the value of ZT,,., it reveals itself more difficult to be
explained, due to the inherently elusive nature of t. This parameter embodies the

asymmetry of the microstructure in favor of the embedded phase: when it increases, it



somehow translates the enhanced connectivity of this phase inside the matrix, at lower
fractions, in a way, blurring out the percolation threshold. The maximum ZT would as
well blur the electrical resistivity drop, pushing back ZT,,, towards higher values of ¢,

together with slight decrease in magnitude as observed in Figure D.

E- DSC study of the Si;yAs;5Te;s glassy phase
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Figure E. DSC curve measured on the composition Si10As15Te75 with a 20K/min-heating rate.

F- Characterizations

Figure F-1. SEM (BSE) images at different scales of the surface of one composite sample with a crystalline fraction of

40%. The darkest phase is the glassy phase while the light grey one is the crystalline Biy4Sb;¢Tes phase.
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Figure F-2. EPMA performed on the 40% Bi0.4Sb1.6Te3 - 60% Si10As15Te75 composite. The left panel shows the
line of measurements carried out while the right panel presents the chemical compositions obtained for each point

probed in this region.
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Figure F-2 displays the results obtained by EPMA, performed on the 40% Bij4Sb;¢Tes -

60% SijpAsisTe;s composite. The line measurement across a glassy region, including the

two edging crystalline regions, allowed for probing composition of both phases. The

averaged compositions of the glassy and crystalline phases were Siy;1As15,2Te731Sbose

and Big39Sb; 71 Tes, respectively. These results seem to indicate Sb migration from the

crystalline phase to the glassy phase. The same phenomenon was also observed for the

20-80 % composite.
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