Electronic Supplementary Information (ESI)

Liquid-crystalline compounds containing both strong *push-pull* azo chromophore and cholesteryl unit as photoresponsive molecular glass materials

Renbo Wei, Xiyang Liu, Yaning He and Xiaogong Wang*

Department of Chemical Engineering, Laboratory of Advanced Materials (MOE),

Tsinghua University, Beijing 100084, People's Republic of China

Zeda Xu

Department of Physics, School of Science,

Beijing University of Aeronautic and Astronautic, Beijing 100083, P. R. China

Scheme S1. Synthetic route of R-Chol.

Figure S1. ¹H NMR spectra of CA-Chol, CN-Chol and NT-Chol.

Figure S2. FT-IR spectra of R-Chol.

Figure S3. POM micrographs of R-Chol, (a) CA-Chol at 168 °C, (b) CN-Chol at 50 °C, (c) CN-Chol at 70 °C, (d) NT-Chol at 90 °C.

Figure S4. X-ray diffraction curves of the R-Chol quenched from the LC state and measured at room temperature.

Figure S5. POM micrograph of the spin-coated film of NT-Chol at room temperature.

Figure S6 DSC curves of R-Chol samples collected from the spin-coated films.

Figure S7. 10-fold quasi-crystal produced with interference pattern on the film of CN-Chol: (a) AFM 2D-view image, (b) AFM 3D-view image, (c) optical micrograph in transmittance mode, (d) optical micrograph in refractive mode, (e) photograph of the He-Ne laser diffraction pattern.

Figure S8. The scheme for the holographic recording on CA-Chol film. A diodepumped frequency-doubled solid state laser beam with Gaussian profile at 532 nm was split into two equal-intensity beams by using a beam splitter (BS). Several mirrors (M) were used to adjust the beam propagation directions. One beam whose size was controlled by a lens (L1) irradiated onto the CA-Chol film directly. Another beam expanded by two lenses (L2 and L3) was used to record the image of panda and then irradiated onto the same position of the CA-Chol film after collimated by a third lens (L4). The whole recording process was completed in 5-20 seconds. After recording the image of panda, a He-Ne laser (633 nm) was used to read out the hologram recorded on the film.