Supplementary Information

Temperature Dependent Microwave Absorption of Ultrathin

Graphene Composites

Wen-Qiang Cao^{a,b}, Xi-Xi Wang^a, Jie Yuan^{b*}, Wen-Zhong Wang^{b*} and Mao-Sheng Cao^{a,*}

^aSchool of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China

^bSchool of Science, Minzu University of China, Beijing 100081, China

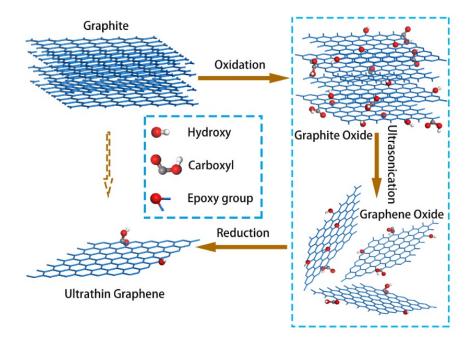


Fig. S1[†] Illustration for fabrication of graphene

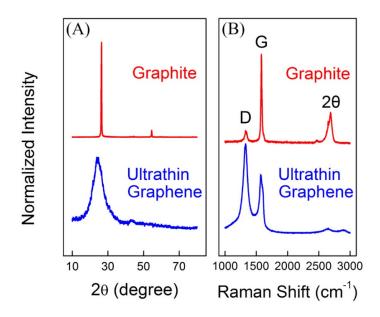


Fig. S2[†] XRD and Raman patterns of the graphite and ultrathin graphene, (A) XRD, (B) Raman spectrum.

Fig. S3[†] AFM images of the (A) graphite and (B) graphene oxide.

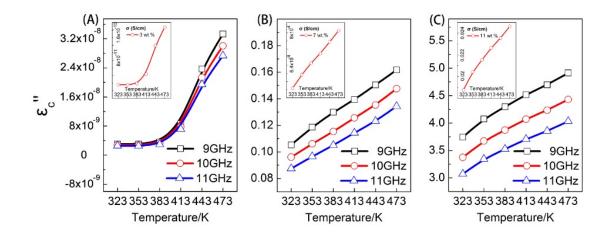


Fig. S4[†] The imaginary permittivity contributed by conductivity of the (A) 3 wt.%, (B) 7 wt.% and (C) 11 wt.% composites versus selected temperatures (323, 353, 383, 413 443 and 473K) at 9 GHz, 10 GHz and 11 GHz. The three insets are fitted conductivity of the (A) 3 wt.%, (B) 7 wt.% and (C) 11 wt.% composites versus selected temperatures (323, 353, 383, 413 443 and 473K).