Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Electrical and thermal transport properties of spark plasma sintered *n*-type

Bi₂Te_{3-x}Se_x alloys: combined effect of point defect and Se content

Yu Pan, Tian-Ran Wei, Chao-Feng Wu and Jing-Feng Li*

State Key Laboratory of New Ceramics and Fine Processing,

School of Materials Science and Engineering, Tsinghua University,

Beijing 100084, China.

E-mail: jingfeng@mail.tsinghua.edu.cn;

Fax: +86-62771160;

Tel: +86-10-62784845.

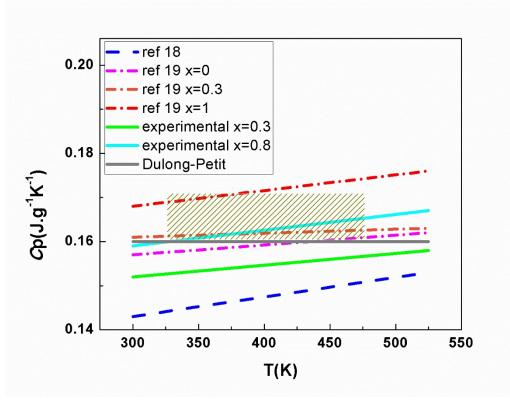


Fig. S1 Specific heat of the $Bi_2Te_{2-x}Se_x$ samples. The shadow parts are the adopted values and other lines are reference values for comparison.

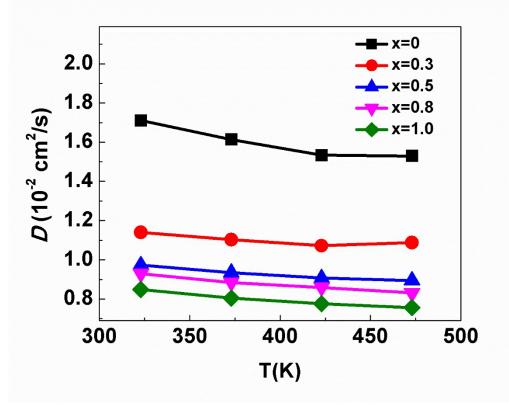
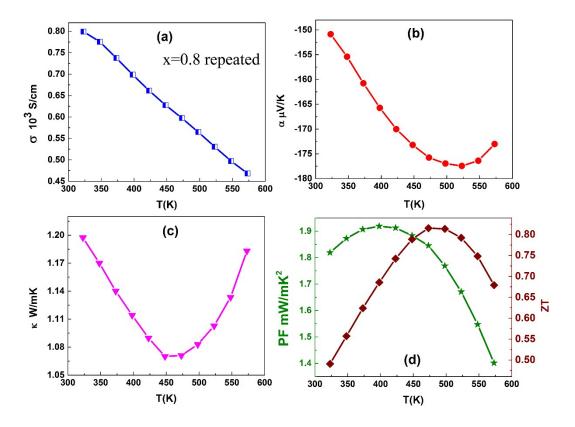
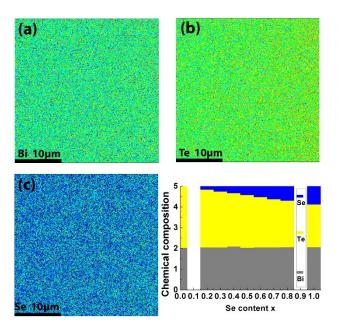




Fig. S2 Thermal diffusivity coefficient of the samples Bi₂Te_{3-x}Se_x (x=0, 0.3, 0.5, 0.8 and 1).

Fig. S3 Temperature dependence of electrical and thermal transport properties of the re-prepared sample $Bi_2Te_{2.2}Se_{0.8}$ (named x=0.8 repeated in the manuscript) from 323K to 573K. This high temperature measurement up to 573K proves that the maximum *ZT* value is limited at 473K. In addition, the uptrend of the thermal conductivity at ~473K demonstrates the onset temperature of the bipolar effect.

Fig. S4 EPMA mapping of main elements on polished $Bi_2Te_{2.2}Se_{0.8}$ surface (a) Bi, (b) Te, (c) Se and quantitative analysis results.

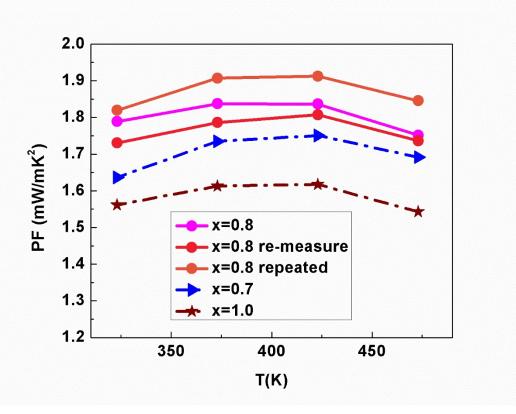


Fig. S5 Comparison of the power factors of $Bi_2Te_{2.2}Se_{0.8}$ to adjacent composition $Bi_2Te_{2.3}Se_{0.7}$ and $Bi_2Te_2Se_1$.

Se contents x	0	0.2	0.3	0.4
Lorenz number L (10 ⁻⁸ V ² K ⁻²)	1.77	1.72	1.71	1.69
0.5	0.6	0.7	0.8	1.0
1.85	1.69	1.68	1.66	1.63

Fig. S6 Calculated Lorenz number

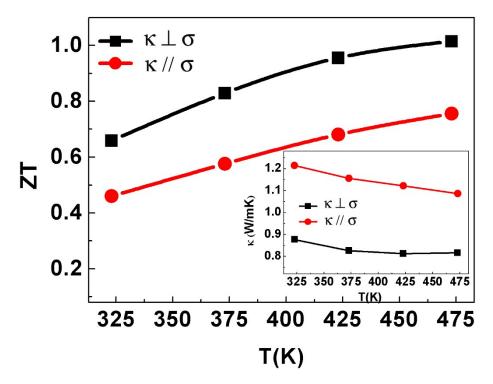


Fig. S7 Comparison of the ZT of $Bi_2Te_{2.2}Se_{0.8}$ with thermal conductivity measured perpendicular and parallel to the measuring direction of electrical conductivity.