Supplementary information

High performance *n*-type bismuth telluride based alloys for mid-temperature power generation

Zhenglong Tang, ^a Lipeng Hu, ^a and Tiejun Zhu, ^{*a,b} Xiaohua Liu, ^a Xinbing Zhao^{*a,b}

^aState Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China. E-mail: xiejian1977@zju.edu.cn; zhaoxb@zju.edu.cn; Fax: +86-571-87951451; Tel: +86-571-87951451

^bKey Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, China

Fig.S1 (a) zT of n-type thermoelectric materials recently researched, (b) zT of n-type Bi₂Te₃ based thermoelectric materials recently researched.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2013

Fig.S2 SbI₃-content dependence of electron concentration (n_H) of hot-deformed Bi₂Te_{1.9}Se_{1.1} bulk samples, together with theoretical carrier concentration.

Fig.S3 In-plane XRD patterns of the repeatedly hot-deformed 0.001SbI₃-Bi₂Te_{1.9}Se_{1.1} bulk samples, taken on the hot-deformed surfaces.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2013

Fig.S4 Temperature dependence of in-plane electrical conductivity (a), Seebeck coefficient (b), power factor (c), in-plane thermal conductivity (d), in-plane ambipolar thermal conductivity (e), of the hot-deformed 0.001SbI₃-Bi₂Te_{1.9}Se_{1.1} samples together with HP and HD undoped samples.