Supplementary Information for

Microfluidic synthesis of Ultra-small Magnetic Nanohybrids for

Enhanced Magnetic Resonance Imaging

Junmei Wang¹^{\$}, Kai Zhao²^{\$}, Xiaomiao Shen¹^{\$}, Weiwei Zhang¹, Shaoxia Ji¹, Yujun Song¹^{*}, Xiaodong Zhang², Rong Rong², Xiaoying Wang²^{*}

¹ Department of Physics, Center for Modern Physics, Engineering Center for Weak Magnetic Detection Beijing, School of Mathematics and Physics, University of Science & Technology Beijing, Beijing 100083, China; ² Department of Radiology, Peiking University First Hospital, Beijing 100034, China

* Corresponding authors: Y.S., songyj@ustb.edu.cn; X.W.,

cjr.wangxiaoying@vip.163.com.

^{\$} Contribute to this article equally.

Figure s1 Experiment setup of the simple programmed microfluidic and rapid batchcooling process: (1) and (2), syringe pumps for the reducing-agent solution and metalsalt solution; (3) and (4), microtubing coils for pre-heating reducing-agent solution and metal-salt solution with the temperature controlled by thermostatic tank 1; (5), threeway mixer for reaction between reducing-agent solution and metal-salt solution; (6), microtubing coil for nucleation and nanoparticle growth with temperature controlled by thermostatic tank 2; (7), nanoparticle collector with temperature controlled by thermostatic tank 3, where the growth is terminated at a designed temperature (e.g., $-15\sim10^{\circ}$ C).

Figure s2 Histogram of size distribution (a) and XPS (b) of $Fe_{(1-x)}Zn_x @Zn_{(1-y)}Fe_yO-(OH)_z$ nanohybrids.

Figure s3 Histogram of size distribution (a: core; b: shell) and XPS (c) of $(CoFe)_{(1-x)}Al_x@Al_{(1-y)}(CoFe)_yO-(OH)_z$ nanohybrids.

Figure s4 Metal ratios in $(CoFe)_{(1-x)}Al_x@Al_{(1-y)}(CoFe)_yO-(OH)_z$ nanohybrids (a) and $Fe_{(1-x)}Zn_x@Zn_{(1-y)}Fe_yO-(OH)_z$ nanohybrids (b) by EDS analysis.

Figure s5 TEM image and size histogram of highly crystalline Fe_3O_4 nanoparticles giving a mean diameter of 7.1 ± 1.2 nm. Lattice distances of 0.483 nm and 0.292nm represent (111) and (220) planes of magnetite spinel Fe_3O_4 .