Supporting Information for

Roll-to-roll infrared (IR) drying and sintering of an inkjet-printed silver nanoparticle ink within 1 second

Enrico Sowade¹[†], Hyunkyoo Kang¹^{†*}, Kalyan Yoti Mitra¹, Oliver J. Weiß², Jürgen Weber², and Reinhard R. Baumann^{1,3}

¹ Digital Printing and Imaging Technology, Institute for Printing and Media Technology, Reichenhainer Str. 70, 09126 Chemnitz, Germany

² Development Infrared Process Technology, Heraeus Noblelight, Reinhard-Heraues-Ring 7, 63801 Kleinostheim, Germany

³ Department Printed Functionalities, Fraunhofer Research Institute for Electronic Nano Systems (ENAS), Technologie-Campus 3, 09126 Chemnitz, Germany

[‡]Authors contributed equally to the presented work.

Fig. S1: Reflectance spectra of aluminium used for the water-cooled top reflector above the IR emitters at different angles of reflection

Fig. S2: Transmission spectrum of quartz glass of the used IR emitters

Fig. S3: Deformation of polymer substrate and damaging of the conductive layer due to high energy exposure and low distance between emitter and substrate