Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2015

1 Supporting Information

- 2
- 3

4 Enhanced Thermal Conductive Property of Polyamide

5 Composites by Low Mass Fraction of Covalently-Grafted

6 Graphene Nanoribbons

7

8 Peng Ding ^{a*}, Nan Zhuang ^a, Xieliang Cui ^b, Liyi Shi ^a, Na Song ^a, Shengfu Tang ^a

9 ^a Research Center of Nanoscience and Nanotechnology, Shanghai University, 99

10 Shangda Road, Shanghai 200444, PR China

11 ^b Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai

12 200444, PR China

13

- 14
- 15
- 16
- 17
- 18
- 20

19

^{*} Corresponding author. Tel/Fax: +86 21-66134726. E-mail address: dingpeng@shu.edu.cn (P. Ding)

- 2 1) The detailed test procedure of thermal conductivity (λ) in the through-plane and in-plane
- 3 directions
- 4 2) Fig. S1 Experimental diagram
- 5 3) Fig. S2 TGA analysis of CNT, GNR, PA6, and PGR composites
- 6 4) Fig. S3 TEM images of PGR-0.1
- 7 5) Fig. S4 Test for intrinsic viscosity and molecular weight for PA6 and PGR.
- 8 6) Table S1 The η_{in} of free PA6 in PGR composites.
- 9 7) Fig. S5 TEM images of PGR-0.7
- 10 8) Fig. S6 SEM images of PGR composites
- 11 9) Table S2: A comprehensive comparison on the improvement in thermal conductivities of
- 12 nanocomposites with different types of fillers
- 13

1 The detailed test procedure of thermal conductivity (λ) in the through-plane and in-plane

2 directions

3 The laser flash technique has been generally known as the standard and the popular method for measuring thermal diffusivities of solid materials above room temperature. The thermal 4 5 conductivity (λ) of the composites was measured by the transient laser flash technique with the 6 Netzsch LFA 447 Nanoflash at 25 °C according to ASTM E1461 standard ("Compos. Sci. Technol. 7 2014; 90: 123", "Compos. Sci. Technol. 2014; 94: 147", "Compos. Sci. Technol. 2010; 70: 2176", "J. Mater. Sci. 2014; 49: 5256", "Carbon. 2012; 50 (14): 5052" and "Fiber. Polym. 2013; 14: 1317"). 8 9 The transient laser flash technique uses a xenon flash lamp to heat the sample from one side by 10 producing shots with energy of 10 J/pulse. The temperature rise was determined at the back side with the nitrogen-cooled InSb IR detector. The output of the temperature detector was amplified 11 12 and adjusted for the initial ambient conditions. The recorded temperature rise curve was the change in the sample temperature resulting from the firing of the flash lamp. The magnitude of the 13 temperature rise and the amount of the light energy were not required for a diffusivity determination; 14 15 only the shape of the curve was used in the analysis. From the analysis of the resulting relative temperature (T/T _{peak})-time curve, the thermal diffusivity (α) can be obtained. For the specific heat 16 (Cp) measurement, the magnitude of the temperature rise of an unknown sample was compared to 17 that of the reference calibration sample which we used pyrex in the direction of through-plane 18 testing. λ was calculated from the equation: $\lambda(T) = \alpha(T)Cp(T)\rho(T)$ (where ρ is the density of the 19 composites and can be obtained from the density measurement through a density balance). λ had 20 21 been revised in the calculation process. The Cp of samples was a relative value which relative to the Cp of the reference calibration sample. To keep the good contact interface between the samples and 22 the probe of Nanoflash, the surfaces of sample disks generally needed to be polished with abrasive 23

paper, though most of them were already flat after hot-pressing. Moreover, before the λ
 measurement, both sides of each disks needed to be sprayed a layer of graphite to reduce the laser
 scattering by the initial surfaces of samples. In addition, the thermal conductivity of each
 temperature point needed to be measured for at least three times, and the average value was the final
 result.

In this method, the samples with different shapes and sizes are necessary for testing the thermal
conductive properties in in-plane and through-plane directions. For through-plane direction, the
diameter and thickness were 12.7 and 1.0 mm, respectively. But for in plane direction, the diameter
and thickness were 25 and 0.1 mm, respectively.

10

2 Fig. S2 TGA analysis of (a)CNT, (b)GNR, (c)PA6, (d)PGR-0.1, (e)PGR-0.5 and (f) PGR-1.0.

1

3 Thermogravimetric analysis and differential scanning calorimetry measurements were applied to study the thermal properties of the PGR composites. The TGA thermograms of pure PA6 and 4 PGR composites were obtained under a nitrogen atmosphere. From Figure S2, there are more 5 oxygen-containing functional groups on the surface and edges of GNR than CNT (weight loss of 6 50% and 10%, respectively). However there are little differences between TGA curves of PGR 7 composites (PGR-0.1, PGR-0.5, PGR-1.0) and PA6, on account of the extremely low GNR wt.% 8 including oxygen-containing groups have been grafted to the PA6 chains after thermal reduction 9 progress at 250 °C. 10

Table S1 The η_{in} of free PA6 in PGR composites.

(c) Fig. S6 SEM images of PGR-0.1 (a), PGR-0.5 (b), PGR-0.7 (c) and PGR-1.0 (d). Samples were frozen in liquid nitrogen for 10 min and then clamped off with pliers to observe the fracture surface morphologies.

Table S2: Comprehensive comparison on the improvement in thermal conductivities ofnanocomposites with different types of fillers

	Ref.	Matrix	Type of filler	TC of matrix λ ₀ (W·m ⁻ ¹ K ⁻¹)	Thern			
					λ_ (W·m ⁻ ¹ K ⁻¹)	Filler content	λ' (λ/λ ₀)	λ'/wt. %
	1	PA66	CF	0.3	0.44	20 wt.%	1.5	7.5
	2	PA66	CF	0.25	0.95	40 wt.%	3.8	9.5
					0.327	5 wt.%	1.3	26.2
	3	PA6	Graphite/CF	0.13	0.3	30 wt.% (no CF)	2.3	7.7
					2.05	60 wt.% (30wt.% CF)	15.8	26.3
	4	PA6	Copper plates	0.3	11.57	92.2 wt.%	38.6	41.9
	5	PA6	Glass fiber/CNT	0.041	0.058	2 wt.%	1.4	70
	6	PA66	Glass fiber/carbon black/graphite	0.25	0.7	30 wt.%	2.8	9.3
	7	PA66	Carbon black	0.3	1.142	30 wt.%	3.8	12.7
	8	PA6	Expandable	NA	1.965	15 wt.%	7	47
Thermal			Graphite		32.33	70 wt.%	110	157
plastic polymer	9	PA66	Graphite	0.278	1.219	- 40 wt.%	4.4	10.9
			CF		1.034		3.7	9.3
maurix	10	PA	OMMT	0.127	≈0.135	5 wt.%	1.1	21.3
	11	PA11	MWNT	NA	≈0.27	5 wt.%	NA	NA
	12	PA6	CF/Al ₂ O ₃ /Mg(O H) ₂ /graphite	0.27	2.1	50 wt.%	7.8	15.6
	13	PA6	LTEG	0.2939	21.05	60 wt.%	71.6	119.4
	14	PA6	CF	0.21	0.32	30 wt.%	1.5	5.1
	15	PA6	CF/BN	0.25	0.98	20 vol.%	3.9	19.6
	16	PA6	Fe ₃ O ₄	0.22	0.93	47 vol.%	4.2	8.9
	17	PA11	CF	0.24	0.3	7.5 wt.%	1.3	16.7
	18	PA6	OMMT	0.28	0.45	20 wt.%	1.6	8
	19	PA6	MWCNT	0.33	0.42	2.1 wt.%	1.3	60.6
	20	PA6/P C(7/3)	Flake graphite	0.292	4.754	50 wt.%	16.3	32.6
	21	PA66/ polycar bonate	Carbon black	0.3	1.1	40 wt.%	3.7	9.2

	22	PAI	MWCNT	0.76	1.41	1.0 wt.%	1.9	190
	23	PS	MWCNT/C	0.12	0.32	20 wt.%	2.7	13.3
			foam		0.17	1 wt.%	1.4	141.7
	24	DC	SWCNTs	0.133	0.62	30 wt.%	4.7	15.6
		PS			0.36	5 wt.%	2.7	54.1
	25	PS	MWNT-g-SMA	0.18	0.89	35 vol.%	4.9	NA
					≈0.2	2.5	1 1	
						vol.%	1.1	INA
	26	PC	CNT	0.218	0.306	8 wt.%	1.4	17.6
					0.232	2 wt.%	1.1	53.2
	27	DC	CND	0.215	0.489	15 wt.%	2.3	15.2
	27	PC	GNP	0.215	0.251	2 wt.%	1.2	58.4
	28	PC	u-MWCNT	0.2	0.28	2.5 wt.%	1.4	56
	29	HDPE	Branch-	0.468	1.99	30 vol.%	4.3	NA
		D'	structured nickel					
		B10-				1.45vol. %	2.9	NA
	30	based	Graphene oxide	0.19	0.542			
		polyest	-					
		ei			~0.5	20 xzt %	2.2	11.4
	31	PP	Graphite	~0.22	~0.3	20 wt. /0	2.3	11.4
			Synthetic		~0.2	2 wt.70	0.9	43.5
	32	PP	graphite	0.20	6.042	80 wt.%	30.2	37.8
			CNT		0.467	15 wt %	23	15.6
					0.36	15 wt %	17	11.0
	33	рр	CB/CNT/SG SG/CB/CNT		0.50	15 wt %	2.4	15.9
					9.47	80 wt %	45.1	56.4
					9.47	80 wt %	45.1	56.4
	34	PP			0.36	15 wt %	17	114
					0.5	15 wt %	2.4	15.9
	35	РР	GNP	~0.25	1.2	25 vol.%	4.8	19.2
	36	EVA	ZnO	0.25	≈0.78	27 vol.%	3.1	NA
	37	LCP	Graphite	0.4	28.3	70 wt.%	70.8	101.1
		³⁸ LCP	Carbon black	1	2.06	15 wt.%	2.1	13.7
			Synthetic		4.33	40 wt.%	4.3	10.8
	38		graphite					
			CF		2.49	60 wt.%	2.5	4.2
	39	LCP	Graphite	0.22	2.624	75 wt.%	11.9	15.9
	40	LCP	Carbon black	0.22	2.63	75 wt.%	12	15.9
	<u>4</u> 1	polysil		0.005	0.12-			20
	41	oxane	BN nanosheets	0.086	0.127	5 wt.%	1.5	30
Our pre	vious	PA6	Graphene oxide	0 196	0.416	10 wt %	2.1	21.2
Our previous		1110	Stuphene onide	0.170	0.110	10 11./0	4.1	<u> </u>

work ⁴²								
			GNR	0.21	0.41 4.85	0.5 wt.%	1.952 2.654	390.5
This w	This work							(λ _⊥)
								530.8
								(λ//)
	43	epoxy	GNPs	0.195	5.864	20 wt.%	28	140
					0.303	2 wt.%	1.6	77.7
	44	epoxy	SiC-HBP	0.167	≈0.334	30 wt.%	2	6.7
	45	epoxy	Al_2O_3	0.236	0.4	20 wt.%	1.7	8.5
	46	epoxy	BN	0.258	0.265	5 wt.%	1.03	20.5
			BN-ODA		0.31	5 wt.%	1.2	24
			BN-HBP		0.329	5 wt.%	1.28	25.5
	47	epoxy	BN and Al ₂ O ₃	0.188	0.808	26.5 vol.%	4.3	16.2
	48	epoxy	GNP	~0.212	0.72	2.7 vol.%	3.4	NA
Thermal set					0.35	0.5 vol.%	1.7	NA
polymer	49	epoxy	MWCNT	0.242	0.251	0.3 wt.%	1	345.7
matrix	50	epoxy	MWCNT	~0.12	≈0.25	1.5 wt.%	2.1	138.9
					0.21	0.5 wt.%	1.8	350
	51	ероху	Al ₂ O ₃ -CNTs	~0.17	0.4	0.75	2.4	
						wt.%		320
						(CNT:		
						0.15		
						wt.%)		
	52	epoxy	GNP-SWCNT	-	1.75	10 wt.%	~8.0	80
	53	S160	Aligned CNT	0.56	1.21	0.3 vol.%	2.2	733.3
	54	FKM	Aligned CNT	0.21	23.3	13.2 wt.%	109.9	832.6

*LTEG, PC, CF, SMA, GNP, S160, and FKM represent: low temperature of expandable
graphite, polycarbonate, carbon fiber, poly(styrene-co-maleic anhydride), graphite nanoplatelet,
silicone elastomer (Sylard 160, Dow Corning), and fluorinated rubber, respectively.

Reference

- 1. J. A. Heiser and J. A. King, *Polym. Compos.*, 2004, **25**, 186-193.
- M. G. Miller, J. M. Keith, J. A. King, R. A. Hauser and A. M. Moran, *J. Appl. Polym. Sci.*, 2006, 99, 2144-2151.
- 3. Y. Yoo, H. L. Lee, S. M. Ha, B. K. Jeon, J. C. Won and S. G. Lee, *Polym. Int.*, 2014, 63, 151-157.
- 4. H. S. Tekce, D. Kumlutas and I. H. Tavman, J. Reinf. Plast. Compos., 2007, 26, 113-121.
- 5. Z. Q. Shen, S. Bateman, D. Y. Wu, P. McMahon, M. Dell'Olio and J. Gotama, *Compos. Sci. Technol.*, 2009, **69**, 239-244.
- J. A. King, K. W. Tucker, B. D. Vogt, E. H. Weber and C. L. Quan, *Polym. Compos.*, 1999, 20, 643-654.
- J. A. King, K. W. Tucker, J. D. Meyers, E. H. Weber, M. L. Clingerman and K. R. Ambrosius, *Polym. Compos.*, 2001, 22, 142-154.
- 8. S. T. Zhou, Y. Z. Lei, H. W. Zou and M. Liang, Polym. Compos., 2013, 34, 1816-1823.
- J. M. Keith, C. D. Hingst, M. G. Miller, J. A. King and R. A. Hauser, *Polym. Compos.*, 2006, 27, 1-7.
- M. Baniassadi, A. Laachachi, F. Hassouna, F. Addiego, R. Muller, H. Garmestani, S. Ahzi, V. Toniazzo and D. Ruch, *Compos. Sci. Technol.*, 2011, 71, 1930-1935.
- 11. M. Q. Yuan, B. Johnson, J. H. Koo and D. Bourell, J. Compos Mater., 2014, 48, 1833-1841.
- 12. M. H. Li, Y. Z. Wan, Z. F. Gao, G. Y. Xiong, X. M. Wang, C. B. Wan and H. L. Luo, *Mater. Des.*, 2013, **51**, 257-261.
- S. T. Zhou, L. Yu, X. Song, J. Chang, H. W. Zou and M. Liang, *J. Appl. Polym. Sci.*, 2014, 131, 10.
- 14. X. L. Yan, Y. Imai, D. Shimamoto and Y. Hotta, Polymer, 2014, 55, 6186-6194.
- 15. D. Shimamoto, Y. Imai and Y. Hotta, J. Ceram. Soc. Jpn., 2014, 122, 732-735.
- B. Weidenfeller, M. Hofer and F. Schilling, *Compos. Pt. A-Appl. Sci. Manuf.*, 2002, 33, 1041-1053.
- 17. A. L. Moore, A. T. Cummings, J. M. Jensen, L. Shi and J. H. Koo, *J. Heat Transf.-Trans. ASME*, 2009, **131**, 5.
- 18. H. Zhou, S. M. Zhang and M. S. Yang, J. Appl. Polym. Sci., 2008, 108, 3822-3827.
- 19. J. C. Yu, B. Tonpheng, G. Grobner and O. Andersson, *Carbon*, 2011, **49**, 4858-4866.
- 20. S. T. Zhou, Y. Chen, H. W. Zou and M. Liang, Thermochim. Acta, 2013, 566, 84-91.
- 21. E. H. Weber, M. L. Clingerman and J. A. King, J. Appl. Polym. Sci., 2003, 88, 112-122.
- 22. S. H. Lee, S. H. Choi, S. Y. Kim and J. R. Youn, J. Appl. Polym. Sci., 2010, 117, 3170-3180.
- 23. L. Ji, M. M. Stevens, Y. Zhu, Q. Gong, J. Wu and J. Liang, Carbon, 2009, 47, 2733-2741.
- 24. J. E. Peters, D. V. Papavassiliou and B. P. Grady, *Macromolecules*, 2008, 41, 7274-7277.
- 25. H. Tu and L. Ye, J. Appl. Polym. Sci., 2010, 116, 2336-2342.
- J. A. King, M. D. Via, J. A. Caspary, M. M. Jubinski, I. Miskioglu, O. P. Mills and G. R. Bogucki, *J. Appl. Polym. Sci.*, 2010, **118**, 2512-2520.
- J. A. King, M. D. Via, F. A. Morrison, K. R. Wiese, E. A. Beach, M. J. Cieslinski and G. R. Bogucki, *J. Compos. Mater.* 2012, 46, 1029-1039.
- M. Liebscher, T. Gaertner, L. Tzounis, M. Micusik, P. Poetschke, M. Stamm, G. Heinrich and B. Voit, *Compos. Sci. Technol.*, 2014, 101, 133-138.
- 29. I. Krupa, V. Cecen, A. Boudenne, J. Prokes and I. Novak, Mater. Des., 2013, 51, 620-628.

- Z. H. Tang, H. L. Kang, Z. L. Shen, B. C. Guo, L. Q. Zhang and D. M. Jia, *Macromolecules*, 2012, 45, 3444-3451.
- V. Causin, C. Marega, A. Marigo, G. Ferrara and A. Ferraro, *Eur. Polym. J.*, 2006, 42, 3153-3161.
- 32. J. A. King, B. A. Johnson, M. D. Via and C. J. Ciarkowski, Polym. Compos., 2010, 31, 497-506.
- 33. J. A. King, D. L. Gaxiola, B. A. Johnson and J. M. Keith, J. Compos Mater., 2010, 44, 839-855.
- D. L. Gaxiola, J. M. Keith, N. Mo, J. A. King and B. A. Johnson, J. Compos Mater., 2011, 45, 1271-1284.
- 35. K. Kalaitzidou, H. Fukushima and L. T. Drzal, *Carbon*, 2007, 45, 1446-1452.
- 36. B. Lee and G. Dai, J. Mater. Sci., 2009, 44, 4848-4855.
- 37. S. M. Ha, H. L. Lee, S. G. Lee, B. G. Kim, Y. S. Kim, J. C. Won, W. J. Choi, D. C. Lee, J. Kim and Y. Yoo, *Compos. Sci. Technol.*, 2013, 88, 113-119.
- 38. T. N. G. Adams, T. R. Olson, J. A. King and J. M. Keith, *Polym. Compos.*, 2011, **32**, 147-157.
- M. G. Miller, J. M. Keith, J. A. King, B. J. Edwards, N. Klinkenberg and D. A. Schiraldi, *Polym. Compos.*, 2006, 27, 388-394.
- 40. J. A. King, R. L. Barton, R. A. Hauser and J. M. Keith, *Polym. Compos.*, 2008, 29, 421-428.
- H. B. Cho, Y. Tokoi, S. Tanaka, T. Suzuki, W. H. Jiang, H. Suematsu, K. Niihara and T. Nakayama, J. Mater. Sci., 2011, 46, 2318-2323.
- 42. P. Ding, S. S. Su, N. Song, S. F. Tang, Y. M. Liu and L. Y. Shi, Carbon, 2014, 66, 576-584.
- 43. S. Ganguli, A. K. Roy and D. P. Anderson, *Carbon*, 2008, 46, 806-817.
- 44. Z. K. Yuan, J. H. Yu, B. L. Rao, H. Bai, N. Jiang, J. Gao and S. R. Lu, *Macromol. Res.*, 2014, **22**, 405-411.
- 45. J. H. Yu, X. Y. Huang, L. C. Wang, P. Peng, C. Wu, X. F. Wu and P. K. Jiang, *Polym. Chem.*, 2011, **2**, 1380-1388.
- J. H. Yu, X. Y. Huang, C. Wu, X. F. Wu, G. L. Wang and P. K. Jiang, *Polymer*, 2012, 53, 471-480.
- 47. L. J. Fang, C. Wu, R. Qian, L. Y. Xie, K. Yang and P. K. Jiang, *RSC Adv.*, 2014, **4**, 21010-21017.
- 48. M. Chao, Y. Demei, C. Jingyu, W. Guolong and F. Lihua, *Carbon*, 2013, 55, 116-125.
- F. H. Gojny, M. H. G. Wichmann, B. Fiedler, I. A. Kinloch, W. Bauhofer, A. H. Windle and K. Schulte, *Polymer*, 2006, 47, 2036-2045.
- 50. Y. S. Song and J. R. Youn, *Carbon*, 2005, **43**, 1378-1385.
- 51. M. Bozlar, D. He, J. Bai, Y. Chalopin, N. Mingo and S. Volz, *Adv. Mater.*, 2010, 22, 1654-1658.
- A. P. Yu, P. Ramesh, X. B. Sun, E. Bekyarova, M. E. Itkis and R. C. Haddon, *Adv. Mater.*, 2008, 20, 4740-4744.
- 53. H. Huang, C. H. Liu, Y. Wu and S. S. Fan, Adv. Mater., 2005, 17, 1656-1661
- 54. K. Uetani, S. Ata, S. Tomonoh, T. Yamada, M. Yumura and K. Hata, *Adv. Mater.*, 2014, **26**, 5857-5862.