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Figure S 1. Electronic structure of PbTe at the experimental lattce constant (aexp=6.4384 Å2)

which shows that it has zero band gap. This band gap is underestimated within density functional

theory and it is far from the experimental band gap of 0.3-0.4 eV.
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Figure S 2. Electronic structure of PbTe with isotropic strain ǫh= -0.014 (a= 6.348 Å), applied

with respect to the experimental lattce constant. At this value of the strain, PbTe is in the TCI

state with band gap of 0.23 eV.
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Figure S 3. Transport properties of PbTe at isotropic strain ǫh= -0.014 (a=6.348 Å).

I. APPENDIX

Following the work by Ishida el el1, we showed that Eq. (6) of the main article can be

reduced to Eq. (3) of the main article for the metallic limit, which further can be reduced

to Eq. (1) of the main article for the case of a free electron gas.

Within the Boltzmann transport theory, the expression for thermopower (S) is given by

σαβ(T,EF ) =
1

Ω

∫
Σαβ(ε)[−

∂f0(T, ε, EF )

∂ε
]dε (1)

and

Sαβ(T,EF ) =
1

eTσαβ(T,EF )

∫
(ε− EF )Σαβ(ε)[−

∂f0(T, ε, EF )

∂ε
]dε, (2)

where α, β are Cartesian indices, Ω, f0 are volume of unit cell, and Fermi-Dirac distribution

function of the carriers respectively. Central to these relations is the transport distribution

function (Σαβ),

Σαβ(ε) =
e2

N

∑
i,k

τvα(i,k)vβ(i,k)δ(ε− εi,k), (3)

Dropping all the indices and functional variables in the tensor quantities (for sake of

simplicity) in the above three equations and substituting Eq. (1) and Eq. (3) in Eq. (2) we

get,
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S =
1

eT

∑∫
τv2(ε)(ε− EF )[−

∂f0
∂ε

]D(ε)dε∑∫
τv2(ε)[−∂f0

∂ε
]D(ε)dε

, (4)

where we have used the identity, 1
N

∑
i,k δ(ε− εi,k) = D(ε), where D(ε) is the density of

states.

For a simple metal the expression for S becomes1,

S ≈ −

1

eT

∑∫
τv2(ε)(ε− EF )

2[f0(1− f0)]D(ε)dε∑∫
τv2(ε)[f0(1− f0)]n(ε)dε

, (5)

where we assumed τ is constant and used ∂f0
∂ε

= f0(1− f0), D(ε) = dn(ε)
dε

= 3n(ε)
2ε

, n(ε) ≈

n(EF ) + (dn(ε)
dε

)ε=EF
and σ(ε) = e2τn(ε)/m. n(ε) is the number of state below ε, f0 =

1
1+(ε−EF )/kBT

and kB is the Boltzmann constant.

Now substituting x = (ε−EF )
kBT

in Eq. (5), we get1

S = −

k2
BT

e

D(EF )
∫
∞

−∞

x2ex

(1+ex)2
dx

N(EF )
∫
∞

−∞

ex

(1+ex)2
dx

, (6)

S = −

π2k2
BT

3e
[
d ln n(ε)

dε
]ε=EF

, (7)

For a free electron gas, we know that,

n(ε) = N(ε)
V

= 1
3π2 (

2m
~2
)
3

2 ε
3

2 , where V is the volume and d ln n(ε)
dε

= 3
2ε
. Substituting these

relations in Eq. (7), we get

S =
8π2k2

BT

3e
m(

π

3n
)
2

3 . (8)
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