Supporting Information

Superconductivity in CaSn₃ single crystal with a AuCu₃-type structure

X. Luo1[†], D. F. Shao1[†], Q. L. Pei¹, J. Y. Song¹, L. Hu¹, Y. Y. Han², X. B. Zhu¹, W. H. Song¹,

W. J. Lu^{1*} and Y. P. $Sun^{1,2,3*}$

¹ Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China

² High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China

³ Collaborative Innovation Center of Advanced Microstructures, Nanjing University,

Nanjing, 210093, China

Abstract

We report the superconductivity of the CaSn₃ single crystal with a AuCu₃-type structure, namely cubic space group P_{m3m} . The superconducting transition temperature T_c =4.2 K is determined by the magnetic susceptibility, electrical resistivity, and heat capacity measurements. The magnetization versus magnetic field (*M-H*) curve at low temperatures shows the typical-II superconducting behavior. The estimated lower and upper critical fields are about 125 Oe and 1.79 T, respectively. The penetration depth $\lambda(0)$ and coherence length $\zeta(0)$ are calculated to be approximately 1147 nm and 136 nm by the Ginzburg-Landau equations. The estimated Sommerfeld coefficient of the normal state γ_N is about 2.9 mJ/mol K². $\Delta C/\gamma_N T_C$ =1.13 and λ_{ep} =0.65 suggest that CaSn₃ single crystal is a weakly coupled superconductor. Electronic band structure calculations show a complex multi-sheet Fermi surface formed by three bands and a low density of states (DOS) at the Fermi level, which is consistent with the experimental results. Based on the analysis of electron phonon coupling of AX₃ compounds (A=Ca, La, and Y; X=Sn and Pb), we theoretically proposed a way to increase T_C in the system.

Electronic mail: wjlu@issp.ac.cn and ypsun@issp.ac.cn

More experimental details:

The used crystals were cubic or rectangle shape, we decanted the crystals is about 270 °C, which is higher than the melting point of element Sn (231 °C) and decanting speed is very fast and can reach 1800 round/second within 10 seconds. We did the polishing before doing the measurements, so just little element Sn may be left on the surface. **Figures:**

Fig. S1: The fitting result using the BGM model is shown at the low temperature.

Fig. S2: The comparation of M(H) between the CaSn₃ single crystal and element Sn at T=3.6 K.