## Emission colour tuning through coupled N/La introduction in Sr<sub>2</sub>SiO<sub>4</sub>: Eu<sup>2+</sup>

Ashley P. Black, Kristin A. Denault, , Carlos Frontera, Ram Sheshadri , Alejandro R. Goñi, and Amparo Fuertes

## **Supplementary Information**

**Table S1.** Crystallographic and refinement data from synchrotron X-ray powder diffraction data ( $\lambda$ =0.458996 Å, T=298 K) for Sr<sub>2-x</sub>La<sub>x</sub>SiO<sub>4-x</sub>N<sub>x</sub> (x= 0.0, 0.2, 0.3, 0.5, 1.0).

|                             | β-Sr <sub>2</sub> SiO <sub>4</sub> | La <sub>0.2</sub> Sr <sub>1.8</sub> SiO <sub>3.8</sub> N <sub>0.2</sub> | La <sub>0.3</sub> Sr <sub>1.7</sub> SiO <sub>3.7</sub> N <sub>0.3</sub> | La <sub>0.5</sub> Sr <sub>1.5</sub> SiO <sub>3.5</sub> N <sub>0.5</sub> | LaSrSiO <sub>3</sub> N |
|-----------------------------|------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------|
| Space group                 | $P2_1/n$                           | Pmnb                                                                    | Pmnb                                                                    | Pmnb                                                                    | Pmnb                   |
| a(Å)                        | 5.6613(1)                          | 5.65855(1)                                                              | 5.6545(1)                                                               | 5.6523(1)                                                               | 5.64986(5)             |
| b(Å)                        | 7.0808(1)                          | 7.0942(1)                                                               | 7.1014(1)                                                               | 7.1100(1)                                                               | 7.11547(5)             |
| c(Å)                        | 9.7558(1)                          | 9.7591(2)                                                               | 9.7641(2)                                                               | 9.7778(2)                                                               | 9.8172(1)              |
| β(°)                        | 92.6515(8)                         |                                                                         |                                                                         |                                                                         |                        |
| $V(Å^3)$                    | 390.66(1)                          | 391.76(1)                                                               | 392.08(1)                                                               | 392.95(1)                                                               | 394.67(1)              |
| $N_p, N_{irefl}^{(a)}$      | 34500, 2617                        | 34500, 1394                                                             | 34500, 1403                                                             | 34500, 1400                                                             | 34500, 1435            |
| $P_{p}, P_{i}, P_{g}^{(b)}$ | 17, 63, 7                          | 13, 24, 39                                                              | 15, 24, 6                                                               | 15, 29, 7                                                               | 13, 26, 7              |
| $R_{Bragg}, R_{f}, \chi^2$  | 5.0, 3.0, 1.43                     | 4.16, 5.06, 1.38                                                        | 4.88, 4.81, 2.01                                                        | 4.15, 3.6, 2.70                                                         | 3.43, 3.88, 1.37       |
| $R_p, R_{wp}, R_{ex}^{(c)}$ | 9.20, 13.6, 11.34                  | 9.51, 13.0, 11.13                                                       | 8.98, 13.3, 9.45                                                        | 9.79, 14.4, 8.73                                                        | 5.98, 9.38, 8.02       |

- (a) N<sub>p</sub>, N<sub>irefl</sub> refer to the number of experimental points and independent reflections.
- (b) P<sub>p</sub>, P<sub>i</sub>, P<sub>g</sub>, refer to the number of profile, intensity-affecting and global refined parameters, respectively.
- (c) Conventional Rietveld R-factors (R<sub>p</sub>, R<sub>wp</sub>, R<sub>exp</sub>) in %

| Site    | Wyckoff<br>position | X        | У         | Z          | occupation<br>factor |
|---------|---------------------|----------|-----------|------------|----------------------|
| La1/Sr1 | 4c                  | 0.25     | 0.6575(7) | 0.4175(3)  | 0.054(9)/0.946       |
| La2/Sr2 | 4c                  | 0.25     | 0.0055(7) | 0.42182(6) | 0.446/0.554          |
| Si      | 4c                  | 0.25     | 0.221(2)  | 0.6966(5)  | 1                    |
| O1/N1   | 4c                  | 0.25     | 0.9950(5) | 0.4343(4)  | 1/0                  |
| O2/N2   | 4c                  | 0.25     | 0.331(8)  | 0.570(5)   | 0.5/0.5              |
| O3/N3   | 8d                  | 0.012(5) | 0.286(4)  | 0.338(4)   | 0.75/0.25            |

Table S2. Atomic coordinates, cation and anion occupancies for Sr<sub>1.5</sub>La<sub>0.5</sub>SiO<sub>3.5</sub>N<sub>0.5</sub><sup>(a,b)</sup>

(a) Estimated standard deviations in parentheses are shown once for each independent variable. La/Sr occupation factors were refined subject to the ideal stoichiometry. O/N occupation factors were considered fixed to those obtained in LaBaSiO<sub>3</sub>N from neutron diffraction in A. P. Black, K. A. Denault, J. Oro-Sole, A. R. Goñi and A. Fuertes, Chem. Comm., 2015, 51, 2166.

(b) Refined isotropic B-factors were 0.83(3) Å<sup>2</sup> for silicon, 2.06(9) Å<sup>2</sup> for O2/N2 and 1.74(7) Å<sup>2</sup> for O3/N3. Temperature factors were refined anisotropically for La/Sr and O1/N1. Resulting equivalent B-factors were 1.29 Å<sup>2</sup>, 0.99 Å<sup>2</sup> and 2.95 Å<sup>2</sup> for La1/Sr1, La2/Sr2 and O1/N1, respectively.



Figure S1. X-ray powder diffraction patterns for Sr<sub>1.98-x</sub>Eu<sub>0.02</sub>La<sub>x</sub>SiO<sub>4-x</sub>N<sub>x</sub> (0≥x≥1) and enlarged images of the intense reflections around Q=2 Å <sup>-1</sup> region.



Figure S2. X-ray powder diffraction patterns for Sr<sub>2-x</sub>La<sub>x-0.02</sub>Ce<sub>0.02</sub>SiO<sub>4-x</sub>N<sub>x</sub> (0.2, 0.3, 1.0) and enlarged images of the intense reflections around Q=2 Å <sup>-1</sup> region.



Figure S3. Observed and calculated synchrotron X-ray powder diffraction patterns for Sr<sub>2-x</sub>La<sub>x</sub>SiO<sub>4-x</sub>N<sub>x</sub>.



Figure S4. TGA curves in O<sub>2</sub> for Sr<sub>2-x</sub>La<sub>x</sub>SiO<sub>4-x</sub>N<sub>x</sub>.



Figure S5. Deconvolution of emission spectra of Sr<sub>2-x</sub>La<sub>x</sub>SiO<sub>4-x</sub>N<sub>x</sub>:Eu<sub>0.02</sub> under excitation at 405 nm.



Figure S6. Deconvolution of emission spectra of Sr<sub>2-x</sub>La<sub>x</sub>SiO<sub>4-x</sub>N<sub>x</sub>:Ce<sub>0.02</sub> under excitation at 405 nm.