Electronic Supplementary Information

Highly luminescent perovskite-aluminum oxide composites

Giulia Longo, Antonio Pertegás, Laura Martínez-Sarti, Michele Sessolo* and Henk J. Bolink

Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, 46980 Paterna, Valencia, Spain

*To whom all correspondence should be addressed: Email: michele.sessolo@uv.es

Figure S1. GIXRD spectra of a) CH₃NH₃Br powder and b) a pure CH₃NH₃PbBr₃ thin film.

Figure S2. UV-Vis absorption of a pristine $CH_3NH_3PbBr_3:Al_2O_3$ thin film with 75 wt% alumina content. The absorption onset at 525 nm indicates that the perovskite forms even without thermal annealing.

Figure S3. Cross-sectional SEM image of a CH₃NH₃PbBr₃/Al₂O₃ NPs thin film on ITO/glass at 30 wt% Al₂O₃.

Figure S4. Tilted angle SEM images of a $CH_3NH_3PbBr_3/Al_2O_3$ NPs thin film on ITO/glass at (a) 30 wt% Al_2O_3 and (b) 50 wt% Al_2O_3 . With increasing NPs content, the crystal formation is hindered.