## Luminescent properties of europium-doped $(H_3O)Y_3F_{10} \cdot xH_2O$ nanocrystals

## Supporting information

Cyril Caron, Denis Boudreau and Anna M. Ritcey

Department of Chemistry, CERMA and COPL, Université Laval, Québec, Canada, G1V 0A6

## Contents :

| Figure S1 | TEM images of europium-doped yttrium fluoride nanoparticles synthesized by the reverse microemulsion technique with 40 mM solutions of precursor ions.                                                                                           |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure S2 | TGA-MS evolution profiles at mass-to-charge ratios (m/z) of 18 and 44, corresponding to $H_2O$ and $CO_2$ , respectively.                                                                                                                        |
| Figure S3 | Emission spectra of digested europium-doped $(H_3O)Y_3F_{10}\cdot xH_2O$ nanoparticles.                                                                                                                                                          |
| Figure S4 | Europium doping levels of $(H_3O)Y_3F_{10}$ ·x $H_2O$ nanoparticle samples determined by inductively coupled plasma mass spectrometry.                                                                                                           |
| Figure S5 | Emission intensity decay curve and residuals plot recorded at 592 nm ( ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ ) for 8 mM solution of europium nitrate in methanol.                                                                                |
| Figure S6 | Emission intensity decay curve and residuals plot recorded at 592 nm ( ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ ) for methanol suspension of 20% europium-doped (H <sub>3</sub> O)Y <sub>3</sub> F <sub>10</sub> · xH <sub>2</sub> O nanoparticles. |
| Table S1  | Elemental composition of various samples determined by EDX.                                                                                                                                                                                      |
| Table S2  | Experimental doping rates determined by EDX and ICP-MS.                                                                                                                                                                                          |
| Table S3  | Phosphorescence lifetime values for methanol suspensions of europium-doped $(H_3O)Y_3F_{10}\cdot xH_2O$ nanoparticles (local two-exponential tail-fit).                                                                                          |
| Table S4  | Phosphorescence lifetime values for methanol suspensions of europium-doped $(H_3O)Y_3F_{10}\cdot xH_2O$ nanoparticles (global two-exponential tail-fit).                                                                                         |
| Table S5  | Europium excited state phosphorescence lifetimes recorded for a methanol solution of europium nitrate (single-exponential tail-fit).                                                                                                             |



Figure S1: Transmission electron microscopy (TEM) images showing yttrium fluoride nanoparticles synthesized by the reverse microemulsion technique starting from 40 mM ion precursor solutions. The europium doping levels are 5% (A), 10% (B), 50% (C) and 100% (D).



**Figure S2:** TGA-MS profiles at mass-to-charge ratios (m/z) of 18 (solid lines) and 44 (dashed lines), corresponding to  $H_2O$  and  $CO_2$ , respectively. Profiles are provided for europium-doped  $(H_3O)Y_3F_{10} \cdot xH_2O$  nanocrystals with doping levels of 5% (green), 10% (yellow), 15% (blue) and 20% (red).



**Figure S3:** Emisison spectra of digested 5% (green), 10% (yellow), 15% (blue) and 20% (red) europium-doped  $(H_3O)Y_3F_{10} \cdot xH_2O$  single crystal nanoparticles. As a reference, the emission spectrum of an aqueous suspension of non-digested  $(H_3O)Y_3F_{10}$ :Eu20% · xH<sub>2</sub>O nanoparticles is provided (purple). ( $\lambda_{exc}$  = 393 nm)



**Figure S4:** Europium doping levels of  $(H_3O)Y_3F_{10} \cdot xH_2O$  nanoparticle samples, as determined by inductively coupled plasma mass spectrometry, as a function the theoretical doping level. The red line represents the ideal case where the experimental doping level is equal to the theoretical one (i.e. that calculated from initial reactant ratios).



**Figure S5:** Emission intensity decay curve and residuals plot recorded at 592 nm ( ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ ) for a 8 mM solution of europium nitrate in methanol fitted with one-decay time tail-fit model.



**Figure S6:** Emission intensity decay curve and residuals plot recorded for 20% europiumdoped (H<sub>3</sub>O)Y<sub>3</sub>F<sub>10</sub>:Eu20% · xH<sub>2</sub>O nanoparticles at 592 nm (<sup>5</sup>D<sub>0</sub>  $\rightarrow$  <sup>7</sup>F<sub>1</sub>) fitted with one-decay time (top panel) and two-decay time (bottom panel) tail-fit models. The shape of the residuals plot in the top panel indicates an ill-fitted decay curve using a single-exponential tail-fit.

|         | Sample composition (at%)                               |             |                                                         |             |                                                         |             |                                                         |             |
|---------|--------------------------------------------------------|-------------|---------------------------------------------------------|-------------|---------------------------------------------------------|-------------|---------------------------------------------------------|-------------|
|         | (H <sub>3</sub> O)Y <sub>3</sub> F <sub>10</sub> :Eu5% |             | (H <sub>3</sub> O)Y <sub>3</sub> F <sub>10</sub> :Eu10% |             | (H <sub>3</sub> O)Y <sub>3</sub> F <sub>10</sub> :Eu15% |             | (H <sub>3</sub> O)Y <sub>3</sub> F <sub>10</sub> :Eu20% |             |
| Element | aggregate 1                                            | aggregate 2 | aggregate 1                                             | aggregate 2 | aggregate 1                                             | aggregate 2 | aggregate 1                                             | aggregate 2 |
| Y       | 18.23                                                  | 17.33       | 22.28                                                   | 15.75       | 18.22                                                   | 22.87       | 21.24                                                   | 16.48       |
| Eu      | 0.6                                                    | 0.64        | 1.62                                                    | 1.17        | 2.06                                                    | 2.62        | 3.07                                                    | 2.91        |
| F       | 42.85                                                  | 42.91       | 65.1                                                    | 58.57       | 62.98                                                   | 58.52       | 65.01                                                   | 54.86       |
| С       |                                                        | 28.44       |                                                         | 16.89       |                                                         |             |                                                         | 16.71       |
| Si      | 7.14                                                   | 4.67        | 5.14                                                    | 3.39        | 9.19                                                    | 8.61        | 4.73                                                    | 5.04        |
| 0       | 22.84                                                  |             |                                                         |             |                                                         |             |                                                         |             |
| Na      | 2.7                                                    | 1.69        |                                                         |             |                                                         |             |                                                         |             |
| к       | 3.88                                                   | 3.17        | 4.49                                                    | 3.15        | 4.65                                                    | 5.11        | 4.7                                                     | 2.98        |
| Са      | 1.75                                                   | 1.13        | 1.37                                                    | 1.09        | 2.28                                                    | 2.26        | 1.24                                                    | 1.03        |
| S       |                                                        |             |                                                         |             | 0.62                                                    |             |                                                         |             |

Table S1: Elemental composition of  $(H_3O)Y_3F_{10} \cdot xH_2O$  single crystal nanoparticles doped at 5%,10%, 15% and 20% with europium ions as determined by energy-dispersive X-ray

|                                                         | Mean doping level (at%) |        |  |  |
|---------------------------------------------------------|-------------------------|--------|--|--|
| Sample                                                  | EDX                     | ICP-MS |  |  |
| (H <sub>3</sub> O)Y <sub>3</sub> F <sub>10</sub> :Eu5%  | 3.4 ± 0.3               | 3 ± 1  |  |  |
| (H <sub>3</sub> O)Y <sub>3</sub> F <sub>10</sub> :Eu10% | 6.8 ± 0.1               | 7 ± 2  |  |  |
| (H <sub>3</sub> O)Y <sub>3</sub> F <sub>10</sub> :Eu15% | 10.2 ± 0.1              | 11 ± 3 |  |  |
| (H <sub>3</sub> O)Y <sub>3</sub> F <sub>10</sub> :Eu20% | 14 ± 2                  | 17 ± 4 |  |  |

Table S2:Experimental doping level values for europium-doped (H<sub>3</sub>O)Y<sub>3</sub>F<sub>10</sub> · xH<sub>2</sub>O nanoparticle<br/>samples determined by energy-dispersive X-ray spectroscopy and inductively<br/>coupled plasma mass spectrometry.

|                       |                                                     | (H <sub>3</sub> O)Y <sub>3</sub> F <sub>10</sub> :Eu5%  |                |                                                      |                |                  |                |  |
|-----------------------|-----------------------------------------------------|---------------------------------------------------------|----------------|------------------------------------------------------|----------------|------------------|----------------|--|
| λ (nm)                | Transition                                          | A1                                                      | $\tau_1$       | A <sub>2</sub>                                       | $\tau_2$       | $\tau_{ave}$     | $\chi^2$       |  |
| 592                   | ${}^{5}\text{D}_{0} \rightarrow {}^{7}\text{F}_{1}$ | 0.58±0.02                                               | 4.38±0.08      | 0.42±0.02                                            | 1.39±0.09      | 3.1±0.2          | 1.05           |  |
| 611                   | ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$               | 0.78±0.06                                               | 4.3±0.1        | 0.22±0.06                                            | 1.9±0.3        | 3.8±0.5          | 1.05           |  |
| 619                   | ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$               | 0.72±0.06                                               | 4.4±0.2        | 0.28±0.06                                            | 1.7±0.3        | 3.6±0.6          | 1.07           |  |
| 690                   | ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$               | -                                                       | -              | -                                                    | -              | -                | -              |  |
| 699                   | ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$               | -                                                       | -              | -                                                    | -              | -                | -              |  |
|                       |                                                     |                                                         |                |                                                      |                |                  |                |  |
|                       |                                                     |                                                         |                | (H <sub>3</sub> O)Y <sub>3</sub> F <sub>10</sub> :Eu | 10%            |                  |                |  |
| λ (nm)                | Transition                                          | A <sub>1</sub>                                          | $\tau_1$       | A <sub>2</sub>                                       | $\tau_2$       | $\tau_{ave}$     | χ <sup>2</sup> |  |
| 592                   | ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$               | 0.52±0.02                                               | 3.97±0.08      | 0.48±0.02                                            | 1.36±0.07      | 2.7±0.2          | 1.01           |  |
| 611                   | ${}^{5}\text{D}_{0} \rightarrow {}^{7}\text{F}_{2}$ | 0.71±0.04                                               | 3.9±0.1        | 0.29±0.04                                            | 1.4±0.2        | 3.2±0.3          | 1.00           |  |
| 619                   | ${}^{5}\text{D}_{0} \rightarrow {}^{7}\text{F}_{2}$ | 0.64±0.05                                               | 3.9±0.1        | 0.36±0.05                                            | 1.5±0.2        | 3.0±0.4          | 1.01           |  |
| 690                   | ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$               | 0.45±0.07                                               | 3.8±0.3        | 0.55±0.07                                            | 1.2±0.2        | 2.3±0.6          | 1.04           |  |
| 699                   | ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$               | 0.6±0.2                                                 | 4.0±0.3        | 0.4±0.1                                              | 1.8±0.4        | 3±1              | 1.06           |  |
|                       |                                                     |                                                         |                | (11.0))(5.5                                          | 4 = 0 (        |                  |                |  |
|                       | <b>-</b>                                            |                                                         |                | (H <sub>3</sub> O)Y <sub>3</sub> F <sub>10</sub> :Eu | 15%            |                  | 2              |  |
| <u>λ (nm)</u>         | Transition                                          | A <sub>1</sub>                                          | τ <sub>1</sub> | A <sub>2</sub>                                       | τ <sub>2</sub> | τ <sub>ave</sub> | χ <sup>2</sup> |  |
| 592                   | ${}^{5}D_{0} \rightarrow {}^{\prime}F_{1}$          | 0.55±0.01                                               | 3.90±0.04      | 0.45±0.01                                            | 1.26±0.04      | 2.7±0.1          | 1.03           |  |
| 611                   | ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$               | 0.73±0.03                                               | 3.95±0.06      | 0.27±0.03                                            | 1.6±0.2        | 3.3±0.3          | 1.08           |  |
| 619                   | ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$               | 0.64±0.02                                               | 3.93±0.06      | 0.36±0.02                                            | 1.35±0.08      | 3.0±0.2          | 1.08           |  |
| 690                   | ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$               | 0.43±0.04                                               | 3.8±0.2        | 0.57±0.04                                            | 1.2±0.1        | 2.3±0.4          | 1.05           |  |
| 699                   | ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$               | 0.7±0.1                                                 | 4.0±0.2        | 0.3±0.1                                              | 1.6±0.4        | 3.3±0.9          | 1.07           |  |
|                       |                                                     | (11.0))/ 5 5 200/                                       |                |                                                      |                |                  |                |  |
| <b>•</b> ( <b>• •</b> | <b>T</b>                                            | (H <sub>3</sub> U)Y <sub>3</sub> F <sub>10</sub> :Eu2U% |                |                                                      |                |                  |                |  |
| <u>λ (nm)</u>         | Iransition                                          | A <sub>1</sub>                                          | τ <sub>1</sub> | A <sub>2</sub>                                       | τ <sub>2</sub> | τ <sub>ave</sub> | χ²             |  |
| 592                   | ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$               | 0.56±0.02                                               | 3.62±0.05      | 0.44±0.02                                            | 1.25±0.06      | 2.6±0.2          | 0.95           |  |
| 611                   | ${}^{5}D_{0} \rightarrow {}^{\prime}F_{2}$          | 0.73±0.03                                               | 3.58±0.07      | 0.27±0.03                                            | $1.4\pm0.1$    | 3.0±0.2          | 1.13           |  |
| 619                   | ${}^{5}D_{0} \rightarrow {}^{\prime}F_{2}$          | 0.71±0.03                                               | 3.52±0.07      | 0.29±0.03                                            | 1.0±0.1        | 2.8±0.2          | 0.99           |  |
| 690                   | ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$               | 0.44±0.05                                               | 3.6±0.2        | 0.56±0.04                                            | 1.1±0.1        | 2.2±0.4          | 1.02           |  |
| 699                   | ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$               | 0.79±0.05                                               | 3.7±0.1        | 0.21±0.05                                            | 1.4±0.3        | 3.2±0.4          | 1.03           |  |

**Table S3:** Phosphorescence lifetime values measured for methanol suspensions of europium-doped  $(H_3O)Y_3F_{10} \cdot xH_2O$  nanoparticles ( $\lambda_{exc} = 393$  nm). Lifetime values calculated using two-exponential local tail-fit. Fitting ranges for all data sets were set to identical boundaries. Uncertainties indicated for A<sub>1</sub>,  $\tau_1$ , A<sub>2</sub>,  $\tau_2$  calculated using support plane error analysis (P=0.68). Decay curves for 690-nm and 699-nm emission lines of 5% Eu-doped nanoparticles not measured due to long signal accumulation times required to achieve two-decay fits with acceptable S/N ratios.

|        | ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ (592 nm) |                |                                            |           |              |          |
|--------|------------------------------------------------|----------------|--------------------------------------------|-----------|--------------|----------|
| λ (nm) | A <sub>1</sub>                                 | τ <sub>1</sub> | A <sub>2</sub>                             | τ2        | $\tau_{ave}$ | χ²       |
| 5%     | 0.66±0.01                                      | 4.07±0.04      | 0.34±0.02                                  | 1.48±0.04 | 3.20±0.09    | 1.26     |
| 10%    | 0.49±0.01                                      | 4.07±0.04      | 0.51±0.01                                  | 1.48±0.04 | 2.75±0.08    | 1.02     |
| 15%    | 0.49±0.01                                      | 4.07±0.04      | 0.51±0.01                                  | 1.48±0.04 | 2.76±0.08    | 1.07     |
| 20%    | 0.44±0.01                                      | 4.07±0.04      | 0.56±0.01                                  | 1.48±0.04 | 2.62±0.07    | 1.12     |
|        |                                                |                |                                            |           |              |          |
| _      |                                                |                | ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (611 | L nm)     |              |          |
| λ (nm) | A <sub>1</sub>                                 | $\tau_1$       | A <sub>2</sub>                             | $\tau_2$  | $\tau_{ave}$ | χ²       |
| 5%     | 0.82±0.03                                      | 4.21±0.06      | 0.18±0.03                                  | 2.06±0.07 | 3.8±0.2      | 1.13     |
| 10%    | 0.55±0.03                                      | 4.21±0.06      | 0.45±0.03                                  | 2.06±0.07 | 3.2±0.2      | 1.03     |
| 15%    | 0.60±0.03                                      | 4.21±0.06      | 0.40±0.03                                  | 2.06±0.07 | 3.4±0.2      | 1.10     |
| 20%    | 0.46±0.03                                      | 4.21±0.06      | 0.54±0.03                                  | 2.06±0.07 | 3.0±0.2      | 1.24     |
|        |                                                |                |                                            |           |              |          |
| _      | ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (619 nm) |                |                                            |           |              |          |
| λ (nm) | A <sub>1</sub>                                 | $\tau_1$       | A <sub>2</sub>                             | $\tau_2$  | $\tau_{ave}$ | $\chi^2$ |
| 5%     | 0.80±0.03                                      | 4.16±0.07      | 0.20±0.03                                  | 1.68±0.08 | 3.7±0.2      | 1.12     |
| 10%    | 0.56±0.03                                      | 4.16±0.07      | 0.44±0.03                                  | 1.68±0.08 | 3.1±0.2      | 1.02     |
| 15%    | 0.60±0.03                                      | 4.16±0.07      | 0.40±0.03                                  | 1.68±0.08 | 3.2±0.2      | 1.05     |
| 20%    | 0.43±0.03                                      | 4.16±0.07      | 0.51±0.02                                  | 1.68±0.08 | 2.9±0.2      | 1.08     |

**Table S4:**Phosphorescence lifetime values measured for methanol suspensions of europium-doped<br/> $(H_3O)Y_3F_{10} \cdot xH_2O$  nanoparticles ( $\lambda_{exc} = 393$  nm) for 3 strongest emission lines (592, 610 and<br/>619 nm). Lifetime values calculated using double-exponential global tail-fit. Fitting ranges for<br/>all data sets were set to identical boundaries. Uncertainties indicated for A1,  $\tau_1$ , A2,  $\tau_2$ <br/>calculated using support plane error analysis (P=0.68).

| λ (nm) | Transition                                          | τ           | χ²   |
|--------|-----------------------------------------------------|-------------|------|
| 592    | ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$               | 0.355±0.003 | 0.93 |
| 617    | ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$               | 0.354±0.002 | 1.02 |
| 685    | ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$               | 0.349±0.008 | 0.95 |
| 694    | ${}^{5}\text{D}_{0} \rightarrow {}^{7}\text{F}_{4}$ | 0.351±0.009 | 1.06 |

**Table S5:** Phosphorescence lifetime values for 8-mM methanol solution of europium nitrate $(\lambda_{exc} = 393 \text{ nm})$ . Lifetime values calculated using single-exponential local tail-fit.Uncertainties are asymptotic standard errors.