Supplementary information

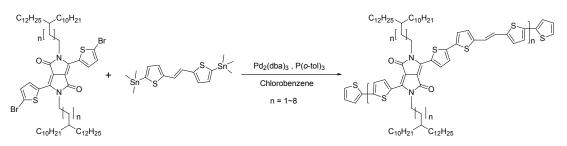
Effect of Alkyl Spacer Length on the Electrical Performance of Diketopyrrolopyrrole-Thiophene Vinylene Thiophene Polymer Semiconductors

Hojeong Yu,^{a,d} Kwang Hun Park,^b Inho Song,^a Myeong-Jong Kim,^b Yun-Hi Kim^{c,*}, Joon Hak Oh^{a,*}

^aDepartment of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 790-784, South Korea
^bSchool of Materials Science and Engineering and Engineering Research Institute, Gyeongsang National University, Jinju, Gyeongnam 660-701, South Korea
^cDepartment of Chemistry and Engineering Research Institute, Gyeongsang National University, Jinju, Gyeongnam 660-701, South Korea
^dSchool of Energy and Chemical Engineering, Ulsan National Institute of Science and

Technology (UNIST), Ulsan 689-798, South Korea.

Keywords: odd-even effects, alkyl spacer groups, alkyl side chains, diketopyrrolopyrrole, organic thin-film transistors


Table of Contents	Page number
S1. Materials and Methods	S3-S6
Figure S1. ¹ H-NMR of DPP-TVT polymers	S7-S10
Figure S2. Quantitative elemental analysis of DPP-TVT polymers	S11
Figure S3. TGA thermograms of DPP-TVT polymers	S12
Figure S4. DSC thermograms of DPP-TVT polymers	S13
Figure S5. Cyclovoltammetry plots of DPP-TVT polymers in acetonitrile	S14
Figure S6. Out-of-plane X-ray diffraction (XRD) diffractogram profiles of the as-cast DPP-TVT polymer films.	S15
Figure S7. AFM phase image of DPP-TVT polymer films annealed at 200 $^{\circ}\mathrm{C}$	S16
Figure S8. Transfer and output curves of DPP-TVT FETs obtained from solution-shearing	S17
Figure S9. Photo-response test of the 29-DPP-TVT FETs upon on-and-off switching of polychromatic light at the transistor off-state	S18
Table S1. TGA and DSC data of DPP-TVT polymers	S19
Table S2. Peak assignments for the out-of-plane XRD intensity profilesobtained from the as-cast DPP-TVT polymer films	S20
References	S21

S1. Materials and Methods

All chemicals were purchased from Aldrich and Alpha : thiophene-2-carbonitrile, dimethyl succinate, 11-(bromomethyl)tricosane, DMF, THF, NBS, n-BuLi, and were used without further purification.3,6-Bis(5-bromothiophen-2-yl)-2,5-bis(2-decyltetradecyl)pyrrolo[3,4-,(E)-1,2-di(thiophen-2-yl)ethene^{S2} c]pyrrole-1,4(2H,5H)-dione^{S1} ((2and decylpentadecyl)bromide,(2-decylhexadecyl)bromide, (2-decylheptadecyl)bromide, (2 -(2-decylnonadecyl)bromide, decyloctadecyl)bromide, (2-decylicosyl)bromide, (2 decylhenicosyl)bromide, (2-decyldocosyl)bromide) were synthesized via published literature procedures.83

¹H-NMR and ¹³C-NMR spectra were recorded using a Bruker AM-300 and DRX-500 MHz spectrometers. Molecular weights and polydispersities of the copolymers were determined by gel permeation chromatography(GPC) analysis with polystyrene standard calibration (waters high-pressure GPC assembly Model M515 pump, u-Styragel columnsof HR4, HR4E, HR5E, with 500 and 100 Å, refractive index detectors, solvent chloroform). Thermal analysis was performed using a TA TGA 2100 thermogravimetric analyzer under a nitrogen atmosphere at a heating rate of 10°C/min. Differential scanning calorimeter (DSC) was conducted under nitrogen using a TA instrument 2100 DSC. The sample was heated at 10°C /min from 30°C to 250°C. UV–vis absorption spectra were measured using a Perkin-Elmer LAMBDA-900 UV spectrophotometer. Cyclic voltammetry (CV) was performed using an EG and G Parc model 273 Å potentiostat/galvanostat system with a three-electrode cell in a solution containing Bu₄NClO₄ (0.1 M) in acetonitrile at a scan rate of 100 mV/s. The polymer films were coated on a square carbon electrode (0.50 cm²) by dipping the electrode, and an Ag/AgNO₃ (0.1 M) electrode was used as the reference electrode.

General Procedure for Stille Polymerization and Polymer Purification

Synthesis of P-25-DPP-TVT

The polymer was prepared using a palladium-catalyzed Stille coupling reaction. In a Schlenk flask 25-DPPBr^[3] (0.5 g, 0.4 mmol) and 1,2-(E)-bis(5-(trimethylstannyl)thiophene-2-yl)ethene (0.22 g, 0.4 mmol) were dissolved in dry chlorobenzene (7.5 mL). After degassing under nitrogen for 60 min, $Pd_2(dba)_3$ (8 mg) and $P(oTol)_3$ (11 mg) were added to the mixture, which was then stirred for 48 h at 110 °C. The end-capping was carried out by 2-bromothiophene and tributyl(thiophen-2-yl)stannane were injected into the reaction mixture for end-capping, and the solution was stirred for 6 h after each addition. The polymer was precipitated in methanol. The crude polymer was collected by filtration and purified by Soxhlet extraction with methanol, acetone, hexane, toluene, and chloroform, successively. The final product, P-25-DPP-TVTS was obtained by precipitation in methanol. Yield : 0.46g. ¹H-NMR (500 MHz, CDCl₃, ppm): δ 8.98 (broad, 4H), 7.49-6.61 (broad, 6H), 4.07 (broad, 4H), 1.96-1.26 (broad, 86H), 0.88 (broad, 12H).

Synthesis of P-26-DPP-TVT

The synthetic procedure is similar as described for P-25-DPP-TVT. Yield : 0.45g. ¹H-NMR (500 MHz, CDCl₃, ppm): δ9.00 (broad, 4H), 7.49-6.58 (broad, 6H), 4.08 (broad, 4H), 2.00-1.23 (broad, 90H), 0.88 (broad, 12H).

Synthesis of P-27-DPP-TVT

The synthetic procedure is similar as described for P-25-DPP-TVT. Yield : 0.44g. ¹H-NMR (500 MHz, CDCl₃, ppm): δ8.96 (broad, 4H), 7.46-6.28 (broad, 6H), 4.10 (broad, 4H), 2.04-1.24 (broad, 94H), 0.86 (broad, 12H).

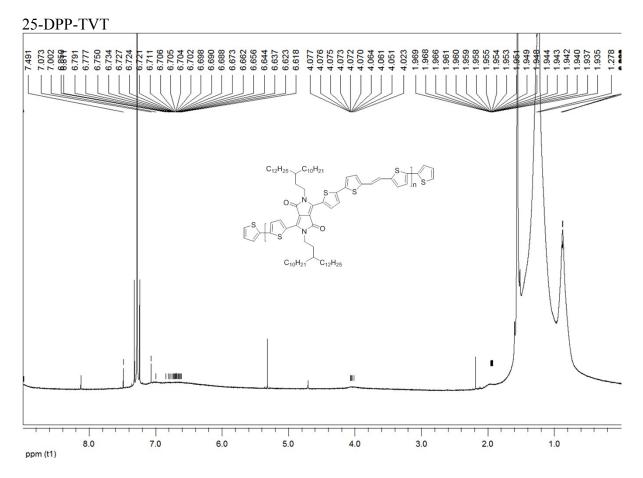
Synthesis of P-28-DPP-TVT

The synthetic procedure is similar as described for P-25-DPP-TVT. Yield : 0.47g. ¹H-NMR (500 MHz, CDCl₃, ppm): δ8.97 (broad, 4H), 7.39-6.87 (broad, 6H), 4.1 (broad, 4H), 1.81-1.26 (broad, 98H), 0.88 (broad, 12H).

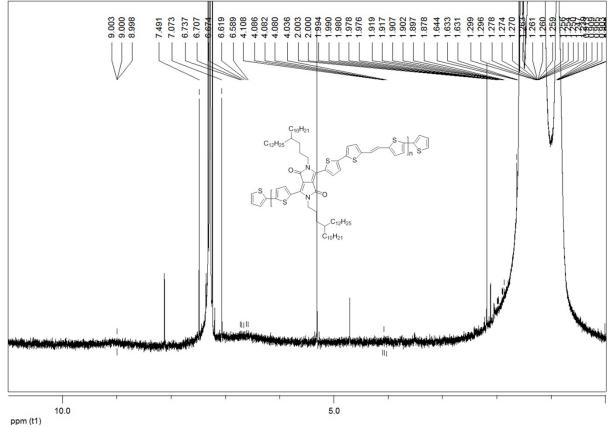
Synthesis of P-29-DPP-TVT

The synthetic procedure is similar as described for P-25-DPP-TVT. Yield : 0.42g. ¹H-NMR (500 MHz, CDCl₃, ppm): δ8.86 (broad, 4H), 7.49-6.98 (broad, 6H), 4.11 (broad, 4H), 2.07-1.27 (broad, 102H), 0.91 (broad,12H).

Synthesis of P-30-DPP-TVT

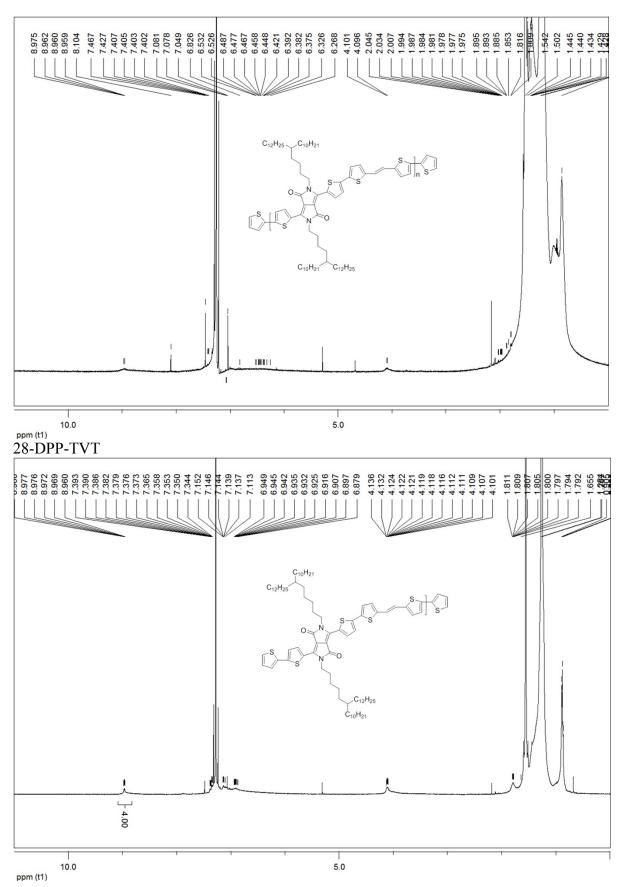

The synthetic procedure is similar as described for P-25-DPP-TVT. Yield : 0.45g. ¹H-NMR (500 MHz, CDCl₃, ppm): δ8.86 (broad, 4H), 7.39-6.84 (broad, 6H), 4.04 (broad, 4H), 1.72-1.28 (broad, 106H), 0.81 (broad,12H).

Synthesis of P-31-DPP-TVT

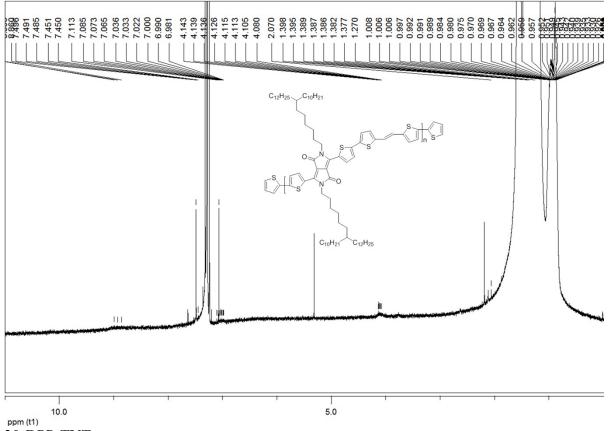

The synthetic procedure is similar as described for P-25-DPP-TVT. Yield : 0.43g. ¹H-NMR (500 MHz, CDCl₃, ppm): δ8.90 (broad, 4H), 7.46-6.93 (broad, 6H), 4.09 (broad, 4H), 2.04-1.24 (broad, 110H), 0.88 (broad,12H).

Synthesis of P-32-DPP-TVT

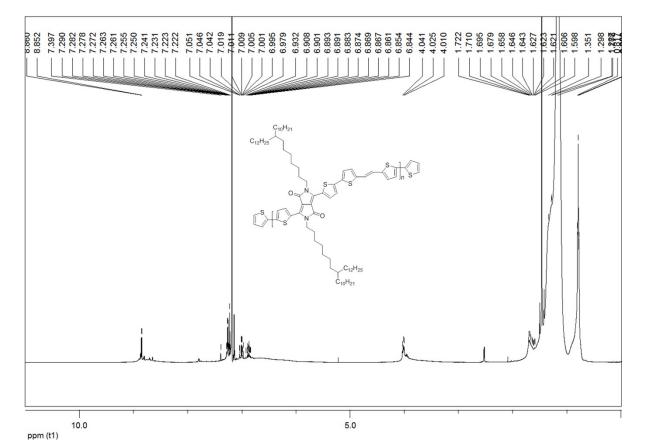
The synthetic procedure is similar as described for P-25-DPP-TVT. Yield: 0.41g. ¹H-NMR (500 MHz, CDCl₃, ppm): δ8.88 (broad, 4H), 7.54-6.26 (broad, 6H), 4.04 (broad, 4H), 2.03-1.31 (broad, 114H), 0.89 (broad, 12H).



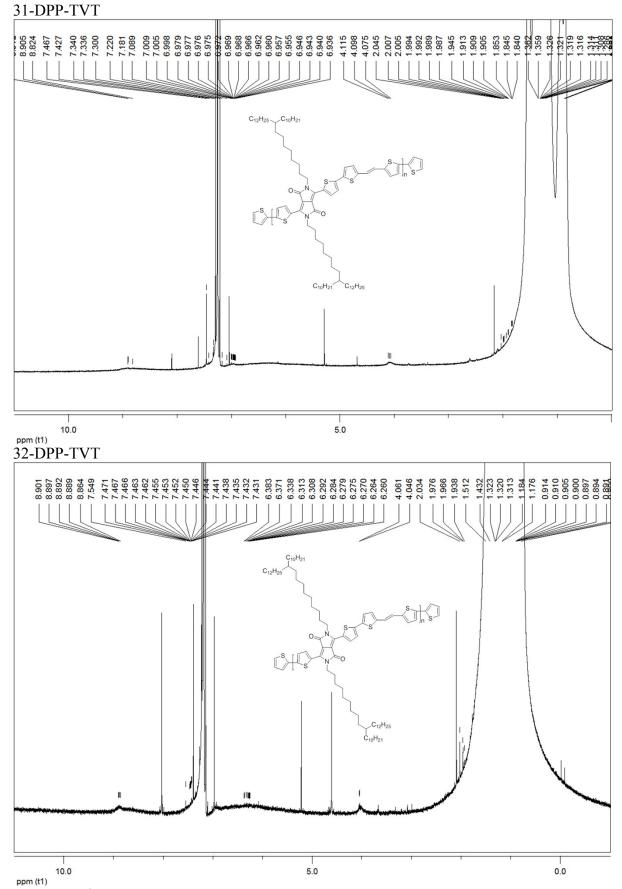
26-DPP-TVT


S7

27-DPP-TVT



S8



S9

Figure S1. ¹H-NMR of DPP-TVT polymers

25DPPTVT

Element Anal. $C_{74}H_{112}N_2O_2S_4$ Cal: C, 74.75; H, 9.43; N, 2.36; S, 10.77; Found: C, 72.11; H, 9.28; N, 2.23; S, 10.69.

27DPPTVT

Element Anal. $C_{78}H_{120}N_2O_2S_4$ Cal: C, 75.24; H, 9.65; N, 2.25; S, 10.29; Found: C, 70.44; H, 9.23; N, 2.13; S, 9.13.

29DPPTVT

Element Anal. $C_{82}H_{128}N_2O_2S_4$ Cal: C, 75.69; H, 9.85; N, 2.15; S, 9.85; Found: C, 74.16; H, 10.30; N, 1.89; S, 8.73.

31DPPTVT

Element Anal. C₈₆H₁₃₆N₂O₂S₄ Cal: C, 76.11; H, 10.03; N, 2.06; S, 9.44; Found: C, 74.05; H, 10.41; N, 1.92; S, 8.34.

26DPPTVT

Element Anal. $C_{76}H_{116}N_2O_2S_4$ Cal: C, 75.00; H, 9.54; N, 2.30; S, 10.53; Found: C, 74.5; H, 9.46; N, 2.41; S, 11.29.

28DPPTVT

Element Anal. $C_{80}H_{124}N_2O_2S_4$ Cal: C, 75.47; H, 9.75; N, 2.20; S, 10.06; Found: C, 75.08; H, 9.98; N, 2.16; S, 9.62.

30DPPTVT

Element Anal. $C_{84}H_{132}N_2O_2S_4$ Cal: C, 75.90; H, 9.94; N, 2.11; S, 9.64; Found: C, 70.14; H, 9.67; N, 1.92; S, 8.53.

32DPPTVT

Element Anal. $C_{88}H_{140}N_2O_2S_4$ Cal: C, 76.30; H, 10.12; N, 2.02; S, 9.25; Found: C, 72.28; H, 9.93; N, 1.97; S, 8.89.

Figure S2. Quantitative elemental analysis of DPP-TVT polymers

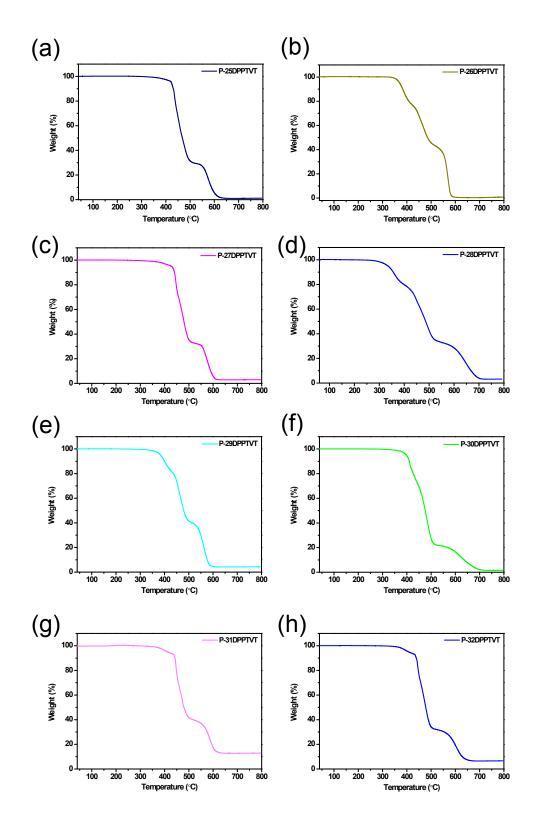


Figure S3. TGA thermograms of DPP-TVT polymers

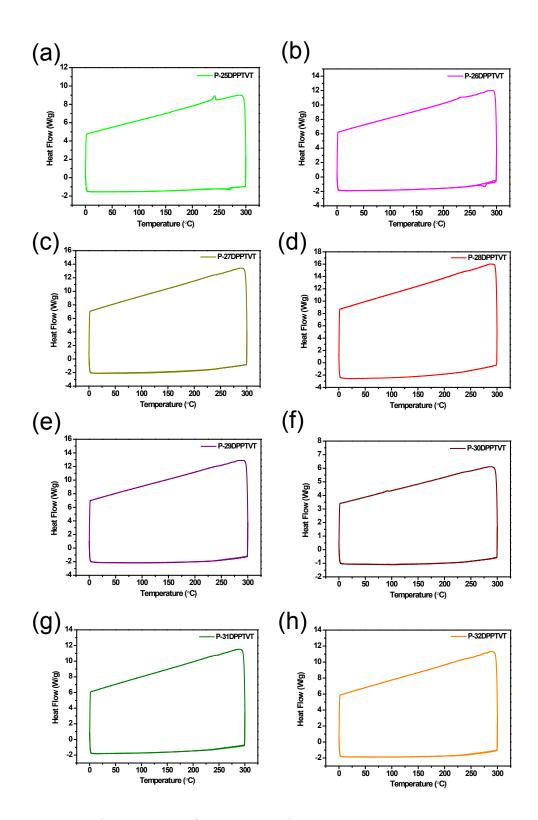
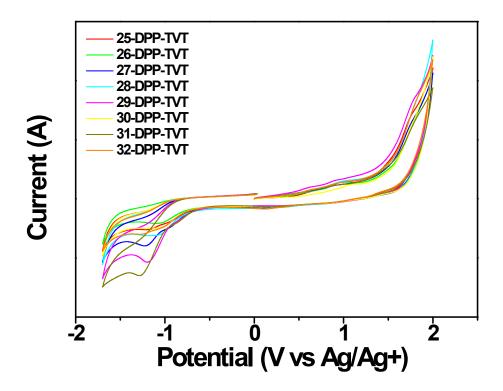
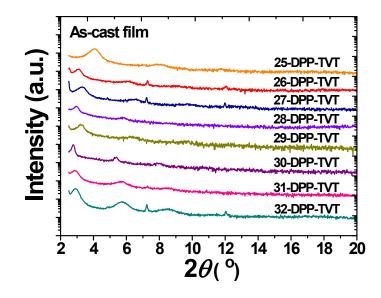
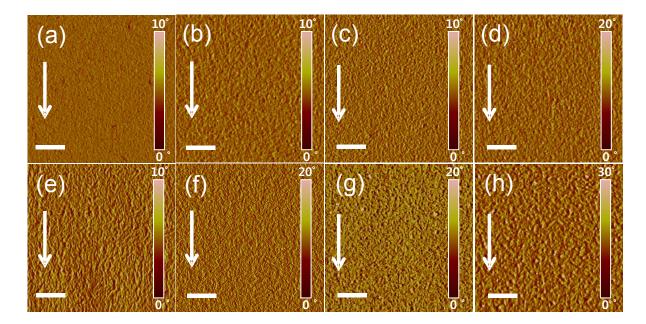
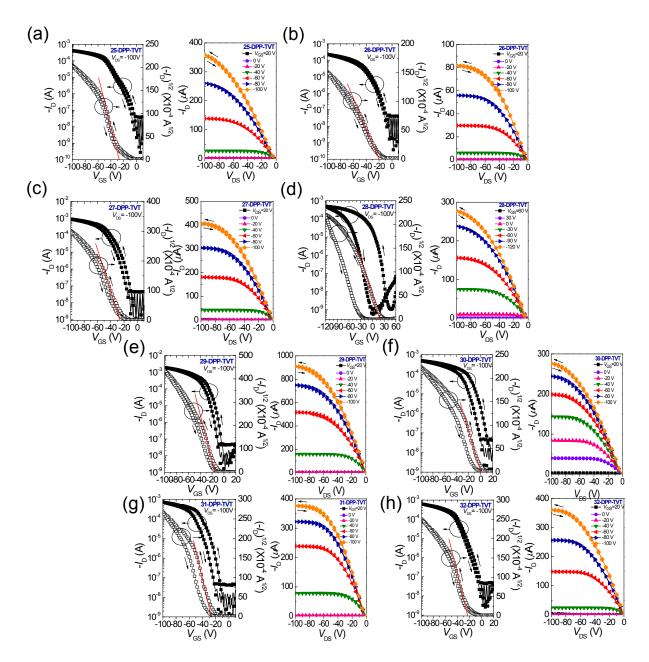


Figure S4. DSC thermograms of DPP-TVT polymers


Figure S5. Cyclovoltammetry plots of DPP-TVT polymers in acetonitrile solution.

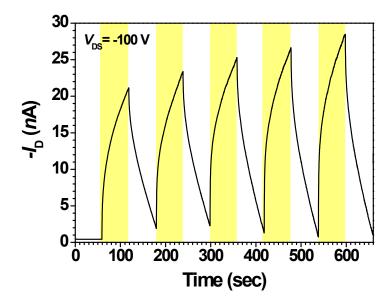

Figure S6. Out-of-plane X-ray diffraction (XRD) diffractogram profiles of the as-cast DPP-TVT polymer films.

Figure S7. AFM phase image of DPP-TVT polymer films annealed at 200 °C. Solutionsheared film of (a) 25-DPP-TVT, (b) 26-DPP-TVT, (c) 27-DPP-TVT, (d) 28-DPP-TVT, (e) 29-DPP-TVT, (f) 30-DPP-TVT, (g) 31-DPP-TVT, and (h) 32-DPP-TVT. The shearing direction (top to bottom) is vertical to the scanning direction (left to right). The arrow indicates the direction of shearing. The scale bars represent 1 μ m.

Figure S8. Transfer and output curves of DPP-TVT FETs obtained from solution-shearing: (a) 25-DPP-TVT, (b) 26-DPP-TVT, (c) 27-DPP-TVT, (d) 28-DPP-TVT, (e) 29-DPP-TVT, (f) 30-DPP-TVT, (g) 31-DPP-TVT, and (h) 32-DPP-TVT. The hole mobilities were calculated from the *I-V* data set obtained using the range of 10 V in the gate voltage sweep.

Figure S9. Photo-response test of the 29-DPP-TVT FETs upon on-and-off switching of polychromatic light ($\lambda = 450 - 650 \text{ nm}$, $\lambda_{\text{max}} = 640 \text{ nm}$, $P_{\text{max}} = 36 \text{ mWcm}^{-2}$) at the transistor off-state ($V_{\text{GS}} = 0 \text{ V}$ and $V_{\text{DS}} = -100 \text{ V}$).

Polymer	TGA ^{a)} T _d	DSC T _g	DSC T _m	DSC T _c
25-DPP-TVT	422.6	-	270.9	241.6
26-DPP-TVT	370.7	-	278.7	232.0
27-DPP-TVT	428.0	-	-	-
28-DPP-TVT	334.7	-	-	-
29-DPP-TVT	383.9	-	-	-
30-DPP-TVT	397.9	-	-	-
31-DPP-TVT	412.8	-	-	-
32-DPP-TVT	407.6	-	-	-

Table S1. TGA and DSC data of DPP-TVT polymers

^{*a*})The temperature of 5% weight-loss under nitrogen.

Polymer	(n00)	2θ (°)	<i>d(100)</i> -spacing (Å)
	(100)	4.04	21.85
	(200)	8.04	-
25-DPP-TVT	(300)	11.82	-
	(400)	-	-
	(100)	3.12	28.28
26-DPP-TVT	(200)	6.10	-
20-DPP-1 V I	(300)	-	-
	(400)	-	-
	(100)	3.34	26.42
	(200)	6.50	-
27-DPP-TVT	(300)	9.94	-
	(400)	-	-
	(100)	2.98	29.62
	(200)	5.78	-
28-DPP-TVT	(300)	-	-
	(400)	-	-
	(100)	3.20	27.58
29-DPP-TVT	(200)	6.38	-
	(300)	9.72	-
	(400)	-	-
	(100)	2.87	30.81
	(200)	5.40	-
30-DPP-TVT	(300)	7.98	-
	(400)	-	-
	(100)	2.83	31.18
21 DDD TVT	(200)	5.70	-
31-DPP-TVT	(300)	8.52	-
	(400)	-	
	(100)	2.90	30.43
	(200)	5.74	-
32-DPP-TVT	(300)	8.60	-
	(400)	-	-

Table S2. Peak assignments for the out-of-plane XRD diffractogram profiles obtained fromthe as-cast DPP-TVT polymer films.

References

- S1. T. L. Nelson, T. M. Young, J. Y. Liu, S. P. Mishra, J. A. Belot, C. L. Balliet, A. E. Javier, T. Kowalewski and R. D. McCullough, *Adv. Mater.*, 2010, **22**, 4617-4621.
- S2. S. C. Ng, H. S. O. Chan, T. T. Ong, K. Kumura, Y. Mazaki and K. Kobayashi, *Macromolecules*, 1998, **31**, 1221-1228.
- S3. J. Y. Back, H. Yu, I. Song, I. Kang, H. Ahn, T. J. Shin, S.-K. Kwon, J. H. Oh and Y.-H. Kim, *Chem. Mater.*, 2015, **27**, 1732-1739.