Supporting information for

Synthesis of highly fluorescent P, O-g-C₃N₄ nanodots for the label-free detection of Cu²⁺ and acetylcholinesterase activity

Mingcong Rong^a, Xinhong Song^a, Tingting Zhao^c, Qiuhong Yao^c, Yiru Wang^a, Xi Chen^{a,b}*

^aDepartment of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

^bState Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China

°Xiamen Huaxia University, Xiamen, 361005, China

Fluorescence quantum yield (QY) measurements

The relative QY of phosphorus, oxygen-doped graphitic carbon nitride nanodots (P, O-g-C₃N₄ nanodots) was determined with reference to quinine sulfate (QY=54% in 0.1 M H₂SO₄).¹ The same excitation and emission slit band widths were applied for both samples, and the QY for the P, O-g-C₃N₄ nanodots was calculated using the following formula:

$$QY = QY_R \bullet \frac{I}{I_R} \bullet \frac{A_R}{A} \bullet \frac{n^2}{n_R^2}$$

where the subscript "R" refers to the referenced fluorescence dye of known QY; n represents the refractive index (1.33 for both water and 0.1 M H_2SO_4); and A is the absorption at the excitation wavelength; and I is the integrated intensity (area) of the testing sample. To avoid the self-absorption effect, absorption in a 10 mm absorption cell was maintained below 0.1 at the excitation wavelength (350 nm for quinine sulfate). The QY of the P, O-g-C_3N_4 nanodots was measured to be 90.2% using this equation.

^{*} Corresponding author. Tel: +86 592 2184530; Fax: +86 592 2184530; E-mail address: *xichen@xmu.edu.cn*

Figure S1. Plot of integrated FL intensity of the P, $O-g-C_3N_4$ nanodots and quinine sulfate as a function of optical absorption at 350 nm.

Figure S2. FT-IR spectrum of (a) the bulk P-g-C₃N₄, (b) the P, O-g-C₃N₄ nanodots and (c) P, O-g-C₃N₄ nanodots with 5 μ M Cu²⁺.

Figure S3. (A) XPS spectrum of the bulk P-g-C₃N₄. (B) XPS spectrum of the P, O-g-C₃N₄ nanodots. (C) C1s spectrum of the bulk P-g-C₃N₄. (D) N1s spectrum of the bulk P-g-C₃N₄. (E) O1s spectrum of the bulk P-g-C₃N₄. (F) P2p spectrum of the bulk P-g-C₃N₄. (G) C1s spectrum of the P, O-g-C₃N₄ nanodots. (H) N1s spectrum of the P, O-g-C₃N₄ nanodots. (I) O1s spectrum of the P, O-g-C₃N₄ nanodots. (J) P2p spectrum of the P, O-g-C₃N₄ nanodots.

Table S1. The elemental analysis results of the bulk $P\mbox{-}g\mbox{-}C_3N_4$ and $P, \mbox{ }O\mbox{-}g\mbox{-}C_3N_4$ nanodots

Materials	N (%)	C (%)	H (%)	Other elements (%)	N/C ratio
Bulk P-g-C ₃ N ₄	57.80	31.93	1.971	8.299	1.55
P, O-g-C ₃ N ₄ nanodots	22.04	15.09	4.465	58.405	1.46

Figure S4. The photostability of the P, O-g-C₃N₄ nanodots (with excitation and emission slit: 10 nm, 10 nm, $\lambda_{ex} = 350$ nm).

Figure S5. Relationship between the concentration of the P, O-g-C₃N₄ nanodots and the fluorescence intensity. F_0 and F represent the fluorescence of the P, O-g-C₃N₄ nanodots in the absence and presence of 3 μ M Cu²⁺.

Figure S6. Kinetic characteristic of the fluorescence response of the P, O-g-C₃N₄ nanodots to 3 μ M Cu²⁺ in 10 mM borate buffer (pH 7.0).

Figure S7. Time-resolved decay of the P, $O-g-C_3N_4$ nanodots with different concentrations of Cu^{2+} in 10 mM borate buffer (pH 7.0) and the corresponding lifetime values.

Figure S8. (A) The plots of the $(\alpha hv)^{1/2}$ versus photon energy. (B) Cyclic voltammogram (CV) of a glass carbon electrode (GCE) modified with the P, O-g-C₃N₄ nanodots in a de-oxygenized acetonitrile solution containing 0.1 M tetra-nbutylammonium hexafluorophosphate. (C) Schematic illustration of the PET mechanism between the P, O-g-C₃N₄ nanodots and Cu²⁺.

The band gap of the P, O-g-C₃N₄ nanodots was determined by plotting the $(\alpha h\nu)^{1/2}$ versus photon energy from the absorption spectrum. α , h and v are absorption coefficient, plank constant and light frequency. The extrapolating the linear region to zero on an abscissas axis is the band gap of the P, O-g-C₃N₄ nanodots ($\Delta E = 2.790 \text{ eV}$).²

The P, O-g-C₃N₄ nanodots stock solution were mixed with 5% Nafion and then dropcasted onto the GCE. The CV were carried out in three-electrode system, with GCE as the working electrode (WE), platinum electrode as the counter electrode (CE) and saturated calomel electrode (SCE) as the reference electrode (RE). The electrode potential of SCE is 0.241 V versus normal hydrogen electrode (NHE). And the electrode potential of NHE is 4.5 V lower than the vacuum electron standard electrode potential. The valence band (VB) and conduction band (CB) were indirectly detected by HOMO and LUMO of the P, O-g-C₃N₄ nanodots by the following formulas.³ E_{ox}^{onset} and E_{red}^{onset} are the onset oxidation and reduction potential of the P, O-g-C₃N₄ nanodots, the E_{red}^{onset} is -0.686 V according to the above figure, but the E_{ox}^{onset} is not obvious in the CV determination. E_{ferrocene}^{1/2} is the average between the oxidation and reduction potential of ferrocene (measured as (0.464 + 0.329) / 2 V = 0.397 V)

HOMO = -
$$[E_{ox}^{onset} - E_{ferrocene}^{1/2} + 4.5 + 0.241] eV$$

LUMO = -
$$[E_{red}^{onset} - E_{ferrocene}^{1/2} + 4.5 + 0.241] eV$$

So, the LUMO = -[-0.686 - 0.397 + 4.5 + 0.241] eV = -3.658 eV (versus the vacuum electron standard electrode potential), the corresponding VB is 0.842 V (versus the NHE)

 $\triangle E = 2.790 \text{ eV} = LUMO - HOMO$

The HOMO = (-3.658 - 2.790)eV = -6.448 eV, and the corresponding CB is -1.948 V. The electrode potential of Cu²⁺/Cu⁺ is 0.153 V (versus the NHE), so the PET mechanism may happen between the P, O-g-C₃N₄ nanodots and Cu²⁺.

Figure S9. (A) UV-vis absorption of 20 μ M Cu²⁺ aqueous and the P, O-g-C₃N₄ nanodots in the presence of increasing concentrations of Cu²⁺ in 10 mM borate buffer (pH 7.0). The inset figure presents the amplification figure of the UV-vis absorption from 230 to 400 nm. (B) The relationship between the absorbance of the P, O-g-C₃N₄ nanodots and the concentration of Cu²⁺.

Figure S10. Fluorescence responses of the P, O-g-C₃N₄ nanodots-Cu²⁺ to 10 mU/mL AChE at different incubation times.

Figure S11. Fluorescence responses of the P, $O-g-C_3N_4$ nanodots in the absence and presence of 10 mU/mL AChE at various concentrations of ATCh.

Table S2. The comparison of different fluorescence methods for the determination of Cu^{2+}

Mathada	Time	Linear detection	Detection	ection
Methods	consumption range		limit	Reference
g-C ₃ N ₄ nanosheets	10 min	0-10 nM (log)	0.5 nM	4
g-C ₃ N ₄ nanodots	10 min	/	0.5 nM	5
CdSe/ZnS QDs	/	0-0.6 µM	0.14 nM	6
Au-AgNCs	5 min	0.5-2.5 µM (log)	0.3 nM	7
H ₃₉ GFP fluorescent protein	5 min	0.05-2 μM	50 nM	8
Carbon quantum dots	1 min	1-100 µM	10 nM	9
Carbon quantum dots	/	2-80 nM	1.8 nM	10
Europium complex-				
functionalized magnetic	5 min	0.1-1 nM	0.1 nM	11
nanoparticle				
Iridium(III) complex	/	0.1-80 µM	22.6 nM	12
P, O-g-C ₃ N ₄ nanodots	5 min	0-1 µM	2 nM	This work

Mathada	Incubation time	Linear detection	Detection	Reference
Methods	consumption	range	limit	
DNA-Cu/AgNCs	20 min	0.05-2 mU/mL	0.05 mU/mL	13
FITC/BSA-AuNCs	30 min	0.8-12 mU/mL	0.4 mU/mL	14
Ag@SiO2 nanoparticles	/	0-5 mU/mL	0.05 mU/mL	15
Carbon dots	10 min	1-80 mU/mL	/	16
H ₃₉ GFP fluorescent protein	30 min	0.025-2 mU/mL	0.015 mU/mL	8
Graphene quantum dots	25 min	/	2.3 mU	17
AuNCs@11-MUA-Cu ²⁺	20 min	0.05-2.5 mU/mL	0.05 mU/mL	18
P, O-g-C ₃ N ₄ nanodots	30 min	0.01-3 mU/mL	0.01 mU/mL	This work

Table S3. The comparison of different fluorescence methods for the determination of AChE activity

References

1. M. Rong, L. Lin, X. Song, T. Zhao, Y. Zhong, J. Yan, Y. Wang and X. Chen, *Anal. Chem.*, 2015, 87, 1288-1296.

2. J. Ye, Y. Li, H. Xu, S. Ouyang, D. Lu, X. Wang and D. Wang, *J. Mater. Chem. A*, 2015, DOI: 10.1039/c5ta05128b.

3. A. Ananthanarayanan, X. W. Wang, P. Routh, B. Sana, S. Lim, D. H. Kim, K. H. Lim, J. Li and P. Chen, *Adv. Funct. Mater.*, 2014, 24, 3021-3026.

- 4. J. Tian, Q. Liu, A. M. Asiri, A. O. Al-Youbi and X. Sun, Anal. Chem., 2013, 85, 5595-5599.
- 5. S. Zhang, J. Li, M. Zeng, J. Xu, X. Wang and W. Hu, Nanoscale, 2014, 6, 4157-4162.

6. L. H. Jin and C. S. Han, Anal. Chem., 2014, 86, 7209-7213.

7. N. Zhang, Y. Si, Z. Sun, L. Chen, R. Li, Y. Qiao and H. Wang, *Anal. Chem.*, 2014, 86, 11714-11721.

8. C. Lei, Z. Wang, Z. Nie, H. Deng, H. Hu, Y. Huang and S. Yao, *Anal. Chem.*, 2015, 87, 1974-1980.

9. Q. Qu, A. Zhu, X. Shao, G. Shi and Y. Tian, Chem Commun, 2012, 48, 5473-5475.

10. M. Vedamalai, A. P. Periasamy, C. W. Wang, Y. T. Tseng, L. C. Ho, C. C. Shih and H. T. Chang, *Nanoscale*, 2014, 6, 13119-13125.

J. Liu, W. Zuo, W. Zhang, Z. Wang, Z. Yang and B. Wang, *Nanoscale*, 2014, 6, 11473-11478.
D. L. Ma, H. Z. He, D. S. Chan, C. Y. Wong and C. H. Leung, *PloS one*, 2014, 9, e99930-e99937.

13. W. Li, Y. Hu, Y. Xia, Q. Shen, Z. Nie, Y. Huang and S. Yao, *Biosens. Bioelectron.*, 2013, 47, 345-349.

14. C. Y. Ke, Y. T. Wu and W. L. Tseng, Biosens. Bioelectron., 2015, 69C, 46-53.

15. K. Ma, L. Lu, Z. Qi, J. Feng, C. Zhuo and Y. Zhang, Biosens. Bioelectron., 2015, 68, 648-653.

16. X. Ren, J. Wei, J. Ren, L. Qiang, F. Tang and X. Meng, Colloids Surf., B, 2015, 125, 90-95.

17. T. He, L. Qi, J. Zhang, Y.-L. Huang and Z.-Q. Zhang, Sens. Actuators, B, 2015, 215, 24-29.

18. J. Sun and X. Yang, Biosens. Bioelectron., 2015, 74, 177-182.