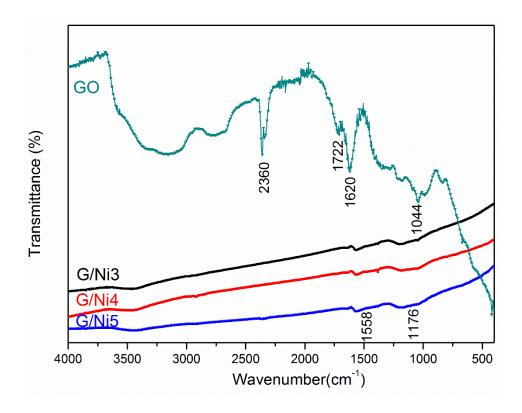
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Material

Synthesis and characterization of reduced graphene oxide /spiky nickel nanocomposites for nanoelectronic applications

Maryam Salimian^a, Maxim Ivanov^b, Francis Leonard Deepak^c, Dmitri Petrovykh^c, Igor Bdikin^{a,b}, Marta Ferro^d, Andre Kholkin^b, Elby Titus^a and Gil Goncalves^a*


^aTEMA-NRD, Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal

^bCICECO-Materials Institute of Aveiro & Department of Physics , University of Aveiro, 3810-193 Aveiro, Portugal

^cINL-International Iberian Nanotechnology Laboratory Av. Mestre Jose Veiga s/n 4715-330 Braga, Portugal

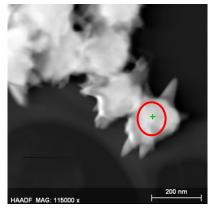

^dDepartment of Material and Ceramic Engineering, University of Aveiro 3810-193, Aveiro, Portugal

Figure S1 shows FT-IR spectra of GO, G/Ni3, G/Ni4 and G/Ni5 nanocomposites. GO profile pattern represents a complete oxidation of graphite. The broad band at high frequency (2800-3600) cm⁻¹ and also a band at 2360 cm⁻¹ related to vibration of OH group. Adsorption bands in 1722 cm⁻¹, 1620 cm⁻¹ and 1044 cm⁻¹ confirmed the vibration of C=O (in COOH), C=C and C-O groups respectively. In RGO/Ni FTIR spectrum there are two weak peaks at 1558 cm⁻¹ and 1176 cm⁻¹. The former is related to C-O vibration band and the later one is related to Graphene sheets vibration. The rest of oxygen functional groups are not exist anymore according to the reduction of graphene oxide [1].

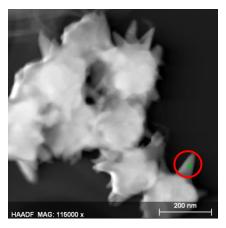

High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) of G/Ni5 nanocomposite with corresponding elemental information in the core of a nickel particle and in a single nanothorn are shown in figures S2 and S3 respectively. This information indicated that the core and the nanothorn of nickel particle composed of about 99% metallic nickel and around 1 % oxygen. This confirmed a very thin oxidation layer covering the nickel particles both around the cores and the nanothorns.

Figure S1.FT-IR spectra of GO, G/Ni3, G/Ni4 and G/Ni5

Element	series	Net	[wt.%]	[norm.	[norm.	Error in
				wt.%]	at.%]	wt.% (3
						Sigma)
Oxygen	K-series	5062	1,14954	1,14954	4,091551	0,202793
Nickel	K-series	1846671	98,85046	98,85046	95,90845	21,144
		Sum:	100	100	100	

Figure S2. High-angle annular dark-field scanning transmission electron microscopy of G/Ni5 nanocomposite and corresponding elemental information at selected area of nickel core.

Element	series	Net	[wt.%]	[norm. wt.%]	[norm. at.%]	Error in wt.% (3 Sigma)
Oxygen	K-series	703	0,749622	0,749622	2,69604	0,189628
Nickel	K-series	394874	99,25038	99,25038	97,30396	21,23402
		Sum:	100	100	100	

Figure S3. High-angle annular dark-field scanning transmission electron microscopy of G/Ni5 nanocomposite and corresponding elemental information at selected area of one single nanothorn.

References

1. Ji, Z.Y., et al., Reduced graphene oxide supported FePt alloy nanoparticles with high electrocatalytic performance for methanol oxidation. New Journal of Chemistry, 2012. **36**(9): p. 1774-1780.