Mo-doped GZO film used as anode or cathode for highly efficient flexible blue, green and red phosphorescent organic light-emitting diodes

Results and discussion

(iii) Conventional blue, green, and red phosphorescent OLEDs with MGZO

anode

Figure S1 shows the EL characteristics of conventional OLEDs with ITO and MGZO anodes on PET substrates. (i.e., Devices I and II).

Fig. S1 (a) EL spectra of Devices IB, IG, IR, IIB, IIG, and IIR; (b) current density-voltage-luminance (*J-V-L*) curves; (c) external quantum efficiency vs. luminance; (d) luminance efficiency vs. luminance.

Table SI collects the EL characteristics of bottom-emitting OLEDs with different flexible anodes from selected articles published during 2007~2014. With the exception of green OLEDs with a graphene anode, our devices with MGZO anodes exhibited superior peak efficiencies and low turn-on voltages, indicating MGZO is not inferior to other previously-reported candidates.

Year	Anode	Ph/Fl [a], emission color	dopant	EQE (%) [max.]	LE (cd/A) [max.]	$V_{on}(V)$ [1 cd/m ²]	Ref.
2007	IZO	Ph, green	Ir(ppy) ₃	13.7	_	~3.6	1
2010	GZO	Ph, blue	Firpic	16.6	—	4.2	2
2010	PEDOT:PSS	Ph, green	Ir(ppy) ₃	_	16.2	4.5	3
2010	ITO/Ag/ITO	Fl, green	Alq ₃	_	1.8	~3.0	4
2012	Graphene	Ph, green	Ir(ppy) ₃	_	98.1	~2.7	5
2013	ZnS/Ag/MoO ₃	Fl, green	Alq ₃	—	~2.8	2.5	6
2014	Graphene/Ag/AZO	Fl, green	Alq ₃	—	~1.5	> 5.0	7
2014	Ag nanowire	Ph, green	Ir(ppy) ₃	_	43.8	3.6	8
2015	MGZO	Ph, blue	FIrpic	21.3	47.5	3.1	This work
		Ph, green	Ir(ppy) ₃	17.9	63.7	2.7	
		Ph, red	Ir(piq) ₃	8.9	6.0	3.0	OIK

 Table SI. EL characteristics of flexible bottom-emitting OLEDs with different anodes

 from selected articles.

[a] Ph: Phosphorescent dopant; Fl: Fluorescent dopant.

Reference

- 1 J.-W. Kang, W.-I. Jeong, J.-J. Kim, H.-K. Kim, D.-G. Kim and G.-H. Lee, *Electrochem. Solid State Lett.*, 2007, **10**, J75.
- L. Wang, J. S. Swensen, E. Polikarpov, D. W. Matson, C. C. Bonham, W. Bennett,
 D. J. Gaspar and A. B. Padmaperuma, *Org. Electron.*, 2010, 11, 1559.
- 3 Y. Yim, J. Park and B. Park, J. Disp. Technol., 2010, 6, 252.
- 4 S. M. Lee, B. H. Choi, J. S. Park, T. H. Kim, H. K. Bae and L. S. Park, *Mol. Cryst. Liq. Cryst.*, 2010, **530**, 110.
- 5 T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn and T.-W. Lee, *Nature Photon.*, 2012, **6**, 105.
- 6 Y. C. Han, M. S. Lim, J. H. Park and K. C. Choi, Org. Electron., 2013, 14, 3437.
- 7 F. Li, Z. Lin, B. Zhang, Y. Zhang, C. Wu and T. Guo, *Org. Electron.*, 2013, 14, 2139.
- 8 H. Lee, D. Lee, Y. Ahn, E.-W. Lee, L. S. Park and Y. Lee, *Nanoscale*, 2014, 6, 8565.