Supporting Information for:

Incompletely Condensed POSS-based Spin-on-Glass Networks for Impeccable Ultra Low-*k* Integration

Albert S. Lee,^a Seung-Sock Choi,^a Sung Yeoun Oh,^a He Seung Lee,^a Bomin Kim,^a Seung Sang Hwang^{ab} and Kyung-Youl Baek^{ab*}

Supporting Figure S1. FTIR spectra for T8-Methyl POSS and IC-Methyl POSS

^a Materials Architecturing Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seong-Buk Gu, Seoul 136-791, Republic of Korea, E-mail: baek@kist.re.kr

^b Nanomaterials Science and Engineering, University of Science and Technology, 217 Gajungro, 176 Gajung-dong, Yuseong-Gu, Daejeon 305-333 Republic of Korea

Supporting Figure S2. ²⁹Si NMR spectra for IC-Methyl-POSS

The ²⁹Si NMR spectra for IC-Methyl POSS revealed characteristic peaks of the fully condensed T³ peaks at -68 ppm and -65 ppm, well as the incompletely condensed T² peak at -58 ppm.¹ The T² peak represents the formation of incompletely condensed silanols such as those of the disilanol POSS, as well as the T³ peak at -65 ppm attributed to the trisilanol POSS T³ silicons, which suggests a mixture of the products shown in Supporting Figure S3.

Supporting Figure S3. Chemical Structures of possible IC-Methyl POSS compounds

References

1. F.J. Feher, R. Terroba and J.W. Ziller, Chem. Comm., 1999, 2309.