# Supporting information

### A Thermally Stable and Reversible Microporous Hydrogen-Bonded Organic

## Framework: Aggregation Induced Emission and Metal Ion-sensing Properties

Hui Zhou,<sup>a</sup> Qun Ye,<sup>a</sup> Xiangyang Wu,<sup>b</sup> Jing Song,<sup>a</sup> Ching Mui Cho,<sup>a</sup> Yun Zong,<sup>a</sup> Ben Zhong Tang,<sup>\*c</sup> T. S. Andy Hor,<sup>ad</sup> Edwin Kok Lee Yeow,<sup>b</sup> and Jianwei Xu<sup>\*ad</sup>

\*Corresponding author: Jianwei Xu Email address: <u>jw-xu@imre.a-star.edu.sg</u> Mailing address: 3 Research Link, Singapore 117602 Tel: 65-6872-7543 Fax: 65-6872-7528

#### **Table content**

Fig. S1 TGA thermogram of POSS-T<sub>8</sub>B recorded at a heating rate of 20 °C/min in air. (3)

Fig. S2 (a) The BET surface areas of POSS-T<sub>8</sub>A obtained from the CO<sub>2</sub> adsorption isotherm at 273 K,  $S_{BET}$  = 70.2773 m<sup>2</sup>/g. (b) Non-local density functional theory pore size distribution of POSS-T<sub>8</sub>A. (3) Fig. S3 (a) Fluorescence spectra of POSS-T<sub>8</sub>A in different solvents ( $\lambda_{ex}$  = 314 nm, [POSS-T<sub>8</sub>A] = 1.0 × 10<sup>-5</sup> M. (b) Photographs of POSS-T<sub>8</sub>A in different solutions taken under UV illumination ( $\lambda_{ex}$  = 365 nm)). (4) Fig. S4 Fluorescence spectrum and particle size (d) and of POSS-T<sub>8</sub>B in THF-H<sub>2</sub>O mixture. [C] =  $1.0 \times$ 10<sup>-5</sup> M, particle size data measured as a function of absorbance at 633 nm. (5) Fig. S5 Fluorescence titration spectra of POSS-T<sub>8</sub>A upon addition of Cu(NO<sub>3</sub>)<sub>2</sub> or with addition of mixed metal ions in DMSO.  $\lambda_{ex}$  = 314 nm, [POSS-T<sub>8</sub>A] = 1.0 × 10<sup>-6</sup> M, [Cu<sup>2+</sup>] = 1.0 × 10<sup>-3</sup> M, [ions] = 1.0 × 10<sup>-3</sup> M. (5) Fig. S6 <sup>1</sup>H NMR spectrum of POSS-T<sub>8</sub>A in DMSO-d<sub>6</sub>. (6) Table S1. Particle sized and quantum yield of microsized polymer particle of POSS-T<sub>8</sub>A in different solvents. (6) Fig. S7 Fluorescence lifetime of POSS-T<sub>8</sub>A in different solvents. (7) Table S2. List of fitting results obtained from time-resolved fluorescence lifetime decay profiles collected at 465 nm of POSS-T<sub>8</sub>A in different solvents. (7) Fig. S8 (a) Particle size distribution of POSS-T<sub>8</sub>A·Cu<sup>2+</sup> in DMSO. (b) Particle size distribution of POSS- $T_8A$  recovered by CN<sup>-</sup> in DMSO. [C] = 1.0 × 10<sup>-5</sup> M, particle size data measured as a function of absorbance at 633 nm. (8) **Fig. S9** FTIR spectra of POSS-T<sub>8</sub>A, POSS-T<sub>8</sub>A·Cu<sup>2+</sup> and POSS-T<sub>8</sub>A recovered by CN<sup>-</sup>. (8) Fig. S10 (a) <sup>1</sup>H NMR spectrum of POSS-T<sub>8</sub>A in DMSO-d<sub>6</sub> (scan number = 2000). (b) <sup>1</sup>H NMR spectrum of POSS-T<sub>8</sub>A in DMSO-d<sub>6</sub> (scan number = 28000, intensity is amplified by 100 times). (c) <sup>1</sup>H NMR spectrum of POSS-T<sub>8</sub>A in pyridine-d<sub>5</sub> (scan number = 2000). (9) Fig. S11 <sup>1</sup>H NMR spectrum of compound 1 in CDCl<sub>3</sub>. (10)Fig. S12 <sup>13</sup>C NMR spectrum of compound 1 in CDCl<sub>3</sub>. (10) Fig. S13 HRMS spectrum of compound 1. (11) Fig. S14 FTIR spectrum of compound 1 in KBr. (11)Fig. S15 <sup>1</sup>H NMR spectrum of compound 2 in CDCl<sub>3</sub>. (12)Fig. S16 <sup>13</sup>C NMR spectrum of compound 2 in CDCl<sub>3</sub>. (12)Fig. S17 HRMS spectrum of compound 2. (13) Fig. S18 FTIR spectrum of compound 2 in KBr. (13)**Fig. S19** <sup>1</sup>H NMR spectrum of POSS-T<sub>8</sub>A in pyridine-d<sub>5</sub>. (14)**Fig. S20** <sup>13</sup>C NMR spectrum of POSS-T<sub>8</sub>A in pyridine-d<sub>5</sub>. (14)Fig. S21 <sup>29</sup>Si NMR spectrum of POSS-T<sub>8</sub>A in DMSO-d<sub>6</sub>. (15) Fig. S22 MALDI-TOF spectrum of POSS-T<sub>8</sub>A. (15) Fig. S23 FTIR spectrum of POSS-T<sub>8</sub>A in KBr. (16) Fig. S24 <sup>1</sup>H NMR spectrum of POSS-T<sub>8</sub>B in CDCl<sub>3</sub>. (16) Fig. S25 <sup>29</sup>Si NMR spectrum of POSS-T<sub>8</sub>B in CDCl<sub>3</sub>. (17)Fig. S26 <sup>13</sup>C NMR spectrum of POSS-T<sub>8</sub>B in CDCl<sub>3</sub>. (17) Fig. S27 FTIR spectrum of POSS-T<sub>8</sub>B in KBr. (18) Fig. S28 MALDI-TOF spectrum of POSS-T<sub>8</sub>B. (18) References (18)



Fig. S1 TGA thermogram of POSS-T<sub>8</sub>B recorded at a heating rate of 20 °C/min in air.





obtained from the CO<sub>2</sub> adsorption isotherm at 273 K,  $S_{BET} = 70.2773 \text{ m}^2/\text{g}$ . (b) Non-local density functional theory pore size distribution of POSS-T<sub>8</sub>A.







**Fig. S3** (a) Fluorescence spectra of POSS-T<sub>8</sub>A in different solvents ( $\lambda_{ex}$  = 314 nm, [POSS-T<sub>8</sub>A] = 1.0 × 10<sup>-5</sup> M. (b) Photographs of POSS-T<sub>8</sub>A in different solutions taken under UV illumination ( $\lambda_{ex}$  = 365 nm)).



**Fig. S4** (a) Fluorescence spectrum and particle size (*d*) and of POSS-T<sub>8</sub>B in THF-H<sub>2</sub>O mixture. [C] =  $1.0 \times 10^{-5}$  M, particle size data measured as a function of absorbance at 633 nm. (b) Photographs of POSS-T<sub>8</sub>B in THF/H<sub>2</sub>O mixtures taken under UV illumination ( $\lambda_{ex}$  = 365 nm)).



**Fig. S5** Fluorescence titration spectra of POSS-T<sub>8</sub>A upon addition of Cu(NO<sub>3</sub>)<sub>2</sub> or with addition of mixed metal ions in DMSO.  $\lambda_{ex}$  = 314 nm, [POSS-T<sub>8</sub>A] = 1.0 × 10<sup>-6</sup> M, [Cu<sup>2+</sup>] = 1.0 × 10<sup>-3</sup> M, [ions] = 1.0 × 10<sup>-3</sup> M.



**Fig. S6** <sup>1</sup>H NMR spectrum of POSS-T<sub>8</sub>A in DMSO-d<sub>6</sub>.

**Table S1**. Particle sized and quantum yield of microsized polymer particle of  $POSS-T_8A$  in different solvents.

|   | Solvent           | 1 × 10 <sup>-5</sup> |                |               |
|---|-------------------|----------------------|----------------|---------------|
|   | Joivent           | Size (nm)            | Count (kcps)   | $\phi_{ m f}$ |
| 1 | THF               | 545.8                | 8.5            | 0.5293        |
| 2 | DMSO              | 291.4                | 5.6            | 0.4310        |
| 3 | DMF               | 841.8                | 8.8            | 0.3841        |
| 4 | CHCl <sub>3</sub> | 406.2                | 8.5            | 0.3291        |
| 5 | Toluene           | 1793.1               | 5.4            | 0.2272        |
| 6 | Dioxane           | 355.1                | 9.0            | 0.4508        |
| 7 | EA                | 154.7                | 8.7            | 0.8312        |
| 8 | Pyridine          | Not detectable       | Not detectable | 0.0006        |



Fig. S7 Fluorescence lifetime of POSS-T<sub>8</sub>A in different solvents.

| Table S2.   | List    | of   | fitting | results | obtained                | from   | time-resolved | fluorescence | lifetime | decay |
|-------------|---------|------|---------|---------|-------------------------|--------|---------------|--------------|----------|-------|
| profiles co | ollecto | ed a | at 465  | nm of P | OSS-T <sub>8</sub> A in | differ | ent solvents. |              |          |       |

| solvent           | $\tau_1/ns$   | τ <sub>2</sub> /ns | τ <sub>3</sub> /ns | <τ>/ns |
|-------------------|---------------|--------------------|--------------------|--------|
| CHCl <sub>3</sub> | 0.03 (6.42%)  | 0.56 (42.64%)      | 1.17 (50.94%)      | 0.99   |
| DMSO              | 0.27 (26.60%) | 1.08 (74.40%)      |                    | 1.01   |
| Dioxane           | 0.47 (36.79%) | 1.20 (63.21%)      |                    | 1.07   |
| EA                | 0.50 (34.81%) | 1.20 (65.19%)      |                    | 1.07   |
| Toluene           | 0.30 (35.60%) | 1.22 (64.40%)      |                    | 1.11   |
| DMF               | 0.47 (14.77%) | 1.46 (85.23%)      |                    | 1.41   |
| THF               | 2.09 (34.30%) | 5.00 (65.70%)      |                    | 4.47   |

The time-resolved fluorescence lifetimes of POSS-T<sub>8</sub>A in different solvents were measured using a time-correlated single photon counting (TCSPC) spectrofluorimeter (FluoroCube, Horiba Jobin Yvon). The samples were excited at 375 nm using a pulsed diode laser (NanoLED-375L, Horiba Jobin Yvon). The fluorescence decay profiles were analyzed using the Horiba Jobin Yvon Datastation software and the goodness of fit was assessed by considering the reduced chi-square ( $\chi^2$ ) value and the randomness of the weighted residuals. All measurements were performed at ambient conditions. All measurements were performed at ambient conditions.



**Fig. S8** (a) Particle size distribution of POSS-T<sub>8</sub>A·Cu<sup>2+</sup> in DMSO. (b) Particle size distribution of POSS-T<sub>8</sub>A recovered by CN<sup>-</sup> in DMSO. [C] =  $1.0 \times 10^{-5}$  M, particle size data measured as a function of absorbance at 633 nm.



Fig. S9 FTIR spectra of POSS-T<sub>8</sub>A, POSS-T<sub>8</sub>A·Cu<sup>2+</sup> and POSS-T<sub>8</sub>A recovered by CN<sup>-</sup>.



**Fig. S10** (a) <sup>1</sup>H NMR spectrum of POSS-T<sub>8</sub>A in DMSO-d<sub>6</sub> (scan number = 2000). (b) <sup>1</sup>H NMR spectrum of POSS-T<sub>8</sub>A in DMSO-d<sub>6</sub> (scan number = 28000, intensity is amplified by 100 times). (c) <sup>1</sup>H NMR spectrum of POSS-T<sub>8</sub>A in pyridine-d<sub>5</sub> (scan number = 2000), [C] = 5.0 mg/mL.



Fig. S11 <sup>1</sup>H NMR spectrum of compound 1 in CDCl<sub>3</sub>.



Fig. S12 <sup>13</sup>C NMR spectrum of compound 1 in CDCl<sub>3</sub>.



Fig. S13 HRMS spectrum of compound 1.



Fig. S14 FTIR spectrum of compound 1 in KBr.







Fig. S16 <sup>13</sup>C NMR spectrum of compound 2 in CDCl<sub>3</sub>.



Fig. S17 HRMS spectrum of compound 2.



Fig. S18 FTIR spectrum of compound 2 in KBr.





C2

C1

C3

Fig. S20 <sup>13</sup>C NMR spectrum of POSS-T<sub>8</sub>A in pyridine-d<sub>5</sub>.

C12-13 C16-17

C9-10

C11

C8

C4

C14-18

C7



Fig. S21  $^{29}$ Si NMR spectrum of POSS-T<sub>8</sub>A in pyridine-d<sub>5</sub>.



Fig. S22 MALDI-TOF spectrum of POSS-T<sub>8</sub>A.



Fig. S23 FTIR spectrum of POSS-T<sub>8</sub>A in KBr.



Fig. S24 <sup>1</sup>H NMR spectrum of POSS-T<sub>8</sub>B in CDCl<sub>3</sub>.



Fig. S25 <sup>29</sup>Si NMR spectrum of POSS-T<sub>8</sub>B in CDCl<sub>3</sub>.



Fig. S26 <sup>13</sup>C NMR spectrum of POSS-T<sub>8</sub>B in CDCl<sub>3</sub>.



Fig. S27 FTIR spectrum of POSS-T<sub>8</sub>B in KBr.



Fig. S28 MALDI-TOF spectrum of POSS-T<sub>8</sub>B.

# References

 H. Zhou, F. Liu, X. Wang, H. Yan, J. Song, Q. Ye, B. Z. Tang, J. Xu. J. Mater. Chem. C, 2015, 3, 5490.