Supporting Information

Design of ceramic phosphor plate with functional materials for applications in high power LEDs

Author(s): Eun-Kyung Ji[†]a, Young-Hyun Song[†]b, Sang Hwan Bak[†]b, Mong Kwon Jung^c, Byung Woo Jeong^d and

Dae-Ho Yoon*ab

^{*a*} SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Republic of Korea. *Email: <u>dhyoon@skku.edu</u>

- ^b School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
- ^c Hyosung Corporation, R&D Business Labs, Anyang 431-080, Republic of Korea
- ^d LG Electronics, Future Device R&D Department, Seoul 137-724, Korea
- *†* These authors contributed equally to this work.

Fig. S1 The XRD patterns of Lu₃Al₅O₁₂: Ce³⁺ phosphor

Sample	Intensity (@200 [°] C)	Δx, Δy (29 [°] C~200 [°] C)	Δλ (29 [°] C~200 [°] C)	Intensity (@1000 h)
LAP-L40 Powder	85.7 %	$\Delta x = 0.016$ $\Delta y = -0.009$	2 nm	92.1 %
LAP-L40 Ceramic	95.4 %	Δx = 0.012 Δy = -0.008	2 nm	95.1 %
LAP-L40+MgO Ceramic	97.3 %	Δx = 0.01 Δy = -0.004	1 nm	96.6 %

Table S1. The information of the characteristics in $Lu_3Al_5O_{12}$: Ce³⁺ ceramic phosphor plate